[Team LiB]

Syaver Aol for

ORERLLY fr——
- Table of Contents
- Index
- Reviews
- Reader Reviews
- Errata

LDAP System Administration

ByGerald Carter

Publisher : O'Reilly

Pub Date : March 2003
ISBN : 1-56592-491-6
Pages : 308

If you want to be a master of your domain, LDAP System Administration will help you get up and running quickly
regardless of which LDAP version you use. After reading this book, even with no previous LDAP experience, you'll
be able to integrate a directory server into essential network services such as mail, DNS, HTTP, and SMB/CIFS.

[Team LiB]

[Team LiB]

ORERLLY fr——
- Table of Contents
- Index
- Reviews
- Reader Reviews
- Errata

LDAP System Administration

ByGerald Carter

Publisher : O'Reilly
Pub Date : March 2003

ISBN : 1-56592-491-6
Pages : 308

Copyright

Preface

How This Book Is Organized

Conventions Used in This Book

Comments and Questions

Acknowledgments

Part I: LDAP Basics
Chapter 1. "Now where did | put that...?", or "What is a directory?"

Section 1.1. The Lightweight Directory Access Protocol
Section 1.2. What Is LDAP?
Section 1.3. LDAP Models

Chapter 2. LDAPvV3 Overview
Section 2.1. LDIF
Section 2.2. What Is an Attribute?
Section 2.3. What Is the dc Attribute?
Section 2.4. Schema References
Section 2.5. Authentication
Section 2.6. Distributed Directories

Section 2.7. Continuing Standardization

Chapter 3. OpenLDAP
Section 3.1. Obtaining the OpenLDAP Distribution
Section 3.2. Software Requirements
Section 3.3. Compiling OpenLDAP 2
Section 3.4. OpenLDAP Clients and Servers
Section 3.5. The slapd.conf Configuration File
Section 3.6. Access Control Lists (ACLS)

Chapter 4. OpenLDAP: Building a Company White Pages
Section 4.1. A Starting Point
Section 4.2. Defining the Schema
Section 4.3. Updating slapd.conf

Section 4.4. Starting slapd

Section 4.5. Adding the Initial Directory Entries
Section 4.6. Graphical Editors

Chapter 5. Replication, Referrals, Searching, and SASL Explained
Section 5.1. More Than One Copy Is "a Good Thing"
Section 5.2. Distributing the Directory
Section 5.3. Advanced Searching Options
Section 5.4. Determining a Server's Capabilities

Section 5.5. Creating Custom Schema Files for slapd
Section 5.6. SASL and OpenLDAP

Part 11: Application Integration

Chapter 6. Replacing NIS
Section 6.1. More About NIS
Section 6.2. Schemas for Information Services

Section 6.3. Information Migration

Section 6.4. The pam Idap Module
Section 6.5. The nss |dap Module
Section 6.6. OpenSSH, PAM, and NSS
Section 6.7. Authorization Through PAM
Section 6.8. Netgroups

Section 6.9. Security

Section 6.10. Automount Maps

Section 6.11. PADL's NIS/LDAP Gateway

Chapter 7. Email and LDAP
Section 7.1. Representing Users
Section 7.2. Email Clients and LDAP
Section 7.3. Mail Transfer Agents (MTAS)

Chapter 8. Standard Unix Services and LDAP
Section 8.1. The Directory Namespace
Section 8.2. An FTP/HTTP Combination
Section 8.3. User Authentication with Samba

Section 8.4. FreeRadius

Section 8.5. Resolving Hosts

Section 8.6. Central Printer Management

Chapter 9. LDAP Interoperability
Section 9.1. Interoperability or Integration?

Section 9.2. Directory Gateways

Section 9.3. Cross-Platform Authentication Services

Section 9.4. Distributed, Multivendor Directories

Section 9.5. Metadirectories

Section 9.6. Push/Pull Agents for Directory Synchronization

Chapter 10. Net::LDAP and Perl
Section 10.1. The Net::LDAP Module
Section 10.2. Connecting, Binding, and Searching
Section 10.3. Working with Net::LDAP::LDIF

Section 10.4. Updating the Directory
Section 10.5. Advanced Net::LDAP Scripting

Part 111: Appendixes
Appendix A. PAM and NSS
Section A.1. Pluggable Authentication Modules
Section A.2. Name Service Switch (NSS)

Appendix B. OpenLDAP Command-Line Tools
Section B.1. Debugging Options

Section B.2. Slap Tools
Section B.3. LDAP Tools

Appendix C. Common Attributes and Objects
Section C.1. Schema Files
Section C.2. Attributes
Section C.3. Object Classes

Appendix D. LDAP RFCs, Internet-Drafts, and Mailing Lists
Section D.1. Requests for Comments

Section D.2. Mailing Lists

Appendix E. slapd.conf ACLs
Section E.1. What?
Section E.2. Who?
Section E.3. How Much?
Section E.4. Examples

Colophon
Index

[Team LiB]

[Team LB] [<ereviovs)

Copyright

Copyright © 2003 O'Reilly & Associates, Inc.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly &
Associates, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly & Associates, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps. The association between the image of
a mink and the topic of LDAP system administration is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB | [<ereviovs)

http://safari.oreilly.com

[Team LB] [<ereviovs)

Preface

In 1999 | began experimenting with the LightweightDirectoryAccessProtocol (LDAP) and immediately became
frustrated by lack of documentation. | set out to write the book that | needed, and | believe that | accomplished
that goal. After teaching instructional courses on LDAP for the past few years, | have come to the belief that many
people share the same frustration | felt at the beginning of my LDAP career. Managers and administrators alike can
sometimes be dazzled (or disgusted) by the plethora of acronyms in the IT industry. The goal of this book is to cut
through the glossy vendor brochures and give you the knowledge and tools necessary to deploy a working
directory on your network complete with integrated client applications.

Directory services have been a part of networks in one way or another for a long time. LDAP directories have been
growing roots in networks for as long as people have been proclaiming the current year to be the "year of LDAP."
With increasing support from vendors in the form of clients and servers, LDAP has already become a staple for
many networks. Because of this gradual but steady growth, people waiting for the LDAP big bang may be
disappointed. You may wake up one morning and find that one of your colleagues has already deployed an LDAP-
based directory service. If so, this book will help you understand how you can use the services that LDAP provides.
If you are at the beginning of a project, this book will help you focus on the important points that are necessary to
succeed.

[Team LiB] [<ereviovs)

[Team LB] [<ereviovs)

How This Book Is Organized

This book is divided into two sections of five chapters each and a section of appendixes. You will most likely get the
most out of this book if you implement the example directories as they are covered. With only a few exceptions, all
client and server applications presented here are freely available or in common use.

Part | : LDAP Basics

Part | focuses on getting acquainted with LDAP and with the OpenLDAP server. In this part, | answer questions
such as: "What is lightweight about LDAP?," "What security mechanisms does LDAP support for preventing
unauthorized access to data?,” and "How can | build a fault-tolerant directory service?" In addition, the first part of
the book helps you gain practical experience with your own directory using the community-developed and freely
available OpenLDAP server.

Chapter 1 is a high-level overview of directory services and LDAP in particular.
Chapter 2 digs into the details of the Lightweight Directory Access Protocol.

Chapter 3 uses the free server distribution from OpenLDAP.org as an example to present practical experience with
an LDAP directory.

Chapter 4 provides some hands-on experience adding, modifying, and deleting information from a working
directory service.

Chapter 5 wraps up the loose ends of some of the more advanced LDAPv3 and OpenLDAP features.

Part Il : Application Integration

Part |l is all about implementation. Rather than present an LDAP cookbook, | bring different applications together
in such a way that information common to one or more clients can be shared via the directory. You will see how to
use LDAP as a practical data store for items such as user and group accounts, host information, general contact
information, and application configurations. | also discuss integration with other directory services such as
Microsoft's Active Directory, and how to develop your own Perl scripts to manage your directory service.

Chapter 6 explains how an LDAP directory can be used to replace Sun's Network Information Service (NIS) as the
means to distribute user and group accounts, host information, automount maps, and other system files.

Chapter 7 presents information related to both mail clients (Eudora, Mozilla, Outlook, and Pine) and servers
(Sendmail, Postfix, and Exim).

Chapter 8 explains how to use an LDAP directory to share information among essential network services such as
FTP, HTTP, LPD, RADIUS, DNS, and Samba.

Chapter 9 examines what to do when your LDAP directory must coexist with other directory technologies.

Chapter 10 provides the information necessary to roll your own LDAP management tools using Perl and the
Net::LDAP module.
Part Ill: Appendixes

The appendixes provide a quick reference for LDAP standards, common schema items used in this book, and the
command-line syntax for OpenLDAP client tools.

[Team LiB] mm

[Team LB] [<ereviovs)

Conventions Used in This Book

The following conventions are used in this book:

Italic
Used for file, directory, user, and group names. It is also used for URLs and to emphasize new terms and
concepts when they are introduced.

Constant Wdth

Used for code examples, system output, parameters, directives, and attributes.
Constant Wdth Italic

Used in examples for variable input or output (e.g., a filename).
Constant Wdt h Bol d

Used in code examples for user input and for emphasis.

"_-‘~ This icon designates a note, which is an important aside to the nearby text.

r
uwh

|! This icon designates a warning relating to the nearby text.

[TeamLiB] [Crreviovs]

[Team LB] [<ereviovs)

Comments and Questions

We at O'Reilly have tested and verified the information in this book to the best of our abilities, but you may find
that features have changed (or even that we have made mistakes!). Please let us know about any errors you find,
as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North
Sebastopol, CA 95472

(800) 998-9938 (U.S. and Canada)
(707) 827-7000 (international/local)
(707) 829-0104 (fax)

You can also contact O'Reilly by email. To be put on the mailing list or request a catalog, send a message to:

info@oreilly.com

We have a web page for this book, which lists errata, examples, and any additional information. You can access
this page at:

http://www.oreilly.com/catalog/ldapsa/

To comment or ask technical questions about this book, send email to:

bookguestions@oreilly.com

For more information about O'Reilly books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com/

[Team LB] [<ereviovs)

http://www.oreilly.com/catalog/ldapsa/
http://www.oreilly.com/

[Team LB] [<ereviovs)

Acknowledgments

At the end of every project, | am acutely aware that | could never have reached the end without the grace
provided to me by God through my Savior, Jesus Christ. | hope He is proud of how | have spent my time. | am
also very conscious of the patience bestowed upon me by my wife, Kristi, who is always there to listen when | need
to talk and laugh when I need a smile. Thank you.

There is a long list of people who have helped make this book possible. I do not claim that this is a complete list.
Mike Loukides has shown almost as much patience as my wife waiting on this book to be completed. | am in great
debt to the technical reviewers who each provided comments on some version of this manuscript: Robbie Allen,
David Blank-Edelman, Zleen Frisch, Robert Haskins, Luke Howard, Scott McDaniel, and Kurt Zeilenga. Thanks to
Aleen for convincing me to do this (even if | complained more than once). | must also mention the various coffee
shops, particularly the Books-A-Million in Auburn, AL, that have allowed me to consume far more than my fair
share of caffeine and electricity.

Finally, a huge amount of recognition must be given to the developers who made various pieces of software

available under open source and free software licenses. It is such an enjoyable experience to be able to send and
receive feedback on problems, bugs, and solutions. Any other way would just be too painful.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

Part I: LDAP Basics

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

Chapter 1. "Now where did | put that...?", or "What is a directory?"

I have a fairly good memory for numbers, phone numbers in particular. This fact amazes my wife. For those
numbers | cannot recall to the exact digit, | have a dozen or so slots in my cell phone. However, as the company |
worked for grew, so did the list of people with whom | needed to stay in contact. And | didn't just need phone
numbers; | needed email and postal addresses as well. My cell phone's limited capabilities were no longer
adequate for maintaining the necessary information.

So | eventually broke down and purchased a PDA. | was then able to store contact information for thousands of
people. Still, two or three times a day | found myself searching the company's contact database for someone's
number or address. And | still had to go to other databases (phone books, corporate client lists, and so on) when |
needed to look up someone who worked for a different company.

Computer systems have exactly the same problem as humans—both require the capability to locate certain types
of information easily, efficiently, and quickly. During the early days of the ARPAnet, a listing of the small
community of hosts could be maintained by a central authority—SRI's Network Information Center (NIC). As
TCP/IP became more widespread and more hosts were added to the ARPAnet, maintaining a centralized list of
hosts became a pipe dream. New hosts were added to the network before everyone had even received the last,
now outdated, copy of the famous HOSTS.TXT file. The only solution was to distribute the management of the host
namespace. Thus began the Domain Name System (DNS), one of the most successful directory services ever
implemented on the Internet.[11

[1] For more information on the Domain Name System and its roots, see DNS and BIND, by Paul Albitz and
Cricket Liu (O'Reilly).

DNS is a good starting point for our overview of directory services. The global DNS shares many characteristics
with a directory service. While directory services can take on many different forms, the following five
characteristics hold true (at a minimum):

e Adirectory service is highly optimized for reads. While this is not a restriction on the DNS model, for
performance reasons many DNS servers cache the entire zone information in memory. Adding, modifying, or
deleting an entry forces the server to reparse the zone files. Obviously, this is much more expensive than a
simple DNS query.

e A directory service implements a distributed model for storing information. DNS is managed by
thousands of local administrators and is connected by root name servers managed by the InterNIC.

e A directory service can extend the types of information it stores. Recent RFCs, such as RFC 2782,
have extended the types of DNS records to include such things as server resource records (RRs).

e A directory service has advanced search capabilities. DNS supports searches by any implemented
record type (e.g., NS, MX, A, etc.).

e A directory service has loosely consistent replication among directory servers. All popular DNS
software packages support secondary DNS servers via periodic "zone transfers" that contain the latest copy
of the DNS zone information.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

1.1 The Lightweight Directory Access Protocol

Of course, you didn't buy this book to read about the Domain Name System. And it's not likely that you were
looking for a general discussion of directory services. This book is about a particular kind of directory
service—namely, a service for directories that implement the Lightweight Directory Access Protocol (LDAP). LDAP
has become somewhat of a buzzword in contemporary IT shops. If you are like me, sometimes you just have to
ask, "Why all the fuss?" The fuss is not so much about LDAP itself, but about the potential of LDAP to consolidate
existing services into a single directory that can be accessed by LDAP clients from various vendors. These clients
can be web browsers, email clients, mail servers, or any one of a myriad of other applications.

By consolidating information into a single directory, you are not simply pouring the contents of your multitude of
smaller pots into a larger pot. By organizing your information well and thinking carefully about the common
information needed by client applications, you can reduce data redundancy in your directories and therefore reduce
the administrative overhead needed to maintain that data. Think about all the directory services that run on your
network and consider how much information is duplicated. Perhaps hosts on your network use a DHCP server. This
server has a certain amount of information about IP addresses, Ethernet addresses, hostnames, network topology,
and so forth in its configuration files. Which other applications use the same or similar information and could share
it if it were stored in a directory server? DNS comes immediately to mind, as does NIS. If you have networked
printers as well, think about the amount of information that's replicated on each client of the printing system (for
example,/etc/printcap files).

Now consider the applications that use your user account information. The first ones that probably come to mind
areauthentication services: users need to type usernames and passwords to log in. Your mail server probably uses
the same username information for mail routing, as well as for services such as mailing lists. There may also be
online phone books that keep track of names, addresses, and phone numbers, as well as personnel systems that
keep track of job classifications and pay scales.

Imagine the administrative savings that would result if all the redundant data on your network could be
consolidated in a single location. What would it take to delete a user account? We all know what that takes now:
you delete the user from /etc/passwd, remove him by hand from any mailing lists, remove him from the company
phone list, and so on. If you're clever, you've probably written a script or two to automate the process, but you're
still manipulating the same information that's stored in several different places. What if there was a single directory
that was the repository for all this information, and deleting a user was simply a matter of removing some records
from this directory? Life would become much simpler. Likewise, what would it take to track host-related
information? What would it be worth to you if you could minimize the possibility that machines and users use out-
of-date information?

This sounds like a network administrator's utopia. However, | believe that as more and more client applications use
LDAP directories, making an investment in setting up an LDAP server will have a huge payoff long-term.
Realistically, we're not headed for a utopia. We're going to be responsible for more servers and more services,
running on more platforms. The dividends of our LDAP investment come when we significantly reduce the number
of directory technologies that we have to understand and administer. That is our goal.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

1.2 What Is LDAP?

The best place to begin when explaining LDAP is to examine how it got its name. Let's start at the beginning. The
latest incarnation of LDAP (Version 3) is defined in a set of nine documents outlined in RFC 3377. This list includes:

RFC 2251-2256

The original core set of LDAPv3 RFCs
RFC 2829

"Authentication Methods for LDAP"
RFC 2830

"Lightweight Directory Access Protocol (v3): Extension for Transport Layer Security"
RFC 3377

"Lightweight Directory Access Protocol (v3): Technical Specification™

1.2.1 Lightweight

Why is LDAP considered lightweight? Lightweight compared to what? (As we look at LDAP in more detail, you'll
certainly be asking how something this complex could ever be considered lightweight.) To answer these questions,
it is necessary to look at LDAP's origins. The roots of LDAP are closely tied to the X.500 directory service; LDAP
was originally designed as a lighter desktop protocol used to gateway requests to X.500 servers. X.500 is actually
a set of standards; anything approaching thorough coverage of X.500 is beyond the scope of this book [21

[2lunderstanding X.500—The Directory , by David W. Chadwick, provides a good explanation of X.500
directories. While the book itself is out of print, an HTML version of it can be accessed from
http://www.salford.ac.uk/its024/X500.htm.

X.500 earned the title "heavyweight." It required the client and server to communicate using the Open Systems
Interface (OSI) protocol stack. This seven-layered stack was a good academic exercise in designing a network
protocol suite, but when compared to the TCP/IP protocol suite, it is akin to traveling the European train system
with four fully loaded footlockers.[31

[3] For a quick, general comparison of the OSI model and the TCP/IP protocol stack, see Computer Networks,
by Andrew S. Tannenbaum (Prentice Hall).

LDAP is lightweight in comparison because it uses low overhead messages that are mapped directly onto the TCP
layer (port 389 is the default) of the TCP/IP protocol stack.[4] Because X.500 was an application layer protocol (in
terms of the OSI model), it carried far more baggage, as network headers were wrapped around the packet at
each layer before it was finally transmitted on the network (see Figure 1-1).

[4] A connectionless version of LDAP that provided access via UDP was defined by an Internet-Draft produced
by the LDAP Extension Working Group of the IETF. However, the current draft expired in November, 2001.
You can access the group's web site at http://www.ietf.org/html.charters/ldape xt-charter.html.

Figure 1-1. X.500 over OSI versus LDAP over TCP/IP

http://www.salford.ac.uk/its024/X500.htm
http://www.ietf.org/html.charters/ldapext-charter.html

¥.500
Application

Presentation LD&R

Session Application

051 protocal stack Trarspart TP | upe

P TCRAP protocal
suite

Network
Data link
Physical Physical rnedia |

LDAP is also considered lightweight because it omits many X.500 operations that are rarely used. LDAPv3 has only
nine core operations and provides a simpler model for programmers and administrators. Providing a smaller and
simpler set of operations allows developers to focus on the semantics of their programs without having to
understand rarely used features of the protocol. In this way, LDAP designers hoped to increase adoption by
providing easier application development.

1.2.2 Directory

Network directory services are nothing new; we're all familiar with the rise of DNS. However, a directory service is
often confused with a database. It is easy to understand why. Directory services and databases share a number of
important characteristics, such as fast searches and an extendable schema. They differ in that a directory is
designed to be read much more than it is written; in contrast, a database assumes that read and write operations
occur with roughly the same frequency. The assumption that a directory is read often but written rarely means
that certain features that are essential to a database, such as support for transactions and write locks, are not
essential for a directory service such as LDAP.

At this point, it's important to make the distinction between LDAP and the backend used to store the persistent
data. Remember that LDAP is just a protocol; we'll discuss what that means shortly, but essentially, it's a set of
messages for accessing certain kinds of data. The protocol doesn't say anything about where the data is stored. A
software vendor implementing an LDAP server is free to use whatever backend it desires, ranging from flat text
files on one extreme to highly scalable, indexed relational databases on the other. So when | say that LDAP doesn't
have support for transactions and other features of databases, | mean that the protocol doesn't have the messages
that you would need to take advantage of these features (remember, it's lightweight) and doesn't require that the
backend data store provide these features.

The point is that the client will never (and should never) see or even know about the backend storage mechanism

(seeFigure 1-2). For this reason, LDAP-compliant clients written by vendor A should interoperate with an LDAP-
compliant server written by vendor Z. Standards can be a wonderful thing when followed.

Figure 1-2. Relationship between an LDAP client, LDAP server, and data storage facility

____DAPdient _.. LDAPserver) _. . Datastorage

Protocol requests
and resporses

It has been suggested that an LDAP server could be used as backend storage for a web server. All HTML and
graphic files would be stored within the directory and could be queried by mutiple web servers. After all, a web
server typically only reads files and sends them to clients; the files themselves change infrequently. While it's
certainly possible to implement a web server that uses LDAP to access its backend storage, a special type of
directory already exists that is better suited to meet the needs of serving files, namely a filesystem. So, for
example, while an LDAP directory might not be a good location for storing spooled files in transit to a printer, using
it to store printer configuration settings (e.g., /etc/printcap) shared among clients would be a big win.

This brings up two good points about the intended function of LDAP:

1. LDAP is not a generalized replacement for specialized directories such as filesystems or DNS.

2. While storing certain types of binary information (e.g., JPEG photos) in directories can be useful, LDAP is not
intended for storing arbitrary "blobs" (Binary Lumps of Bits).

What about storing individual application settings for roaming users on an LDAP server? It is a judgment call
whether this is better served by a filesystem or a directory. For example, it is possible to store basic application
settings for Netscape Communicator in LDAP. Such things as an address book, a bookmarks file, and personal
preference settings are certainly appropriate for storage in a directory. However, using your directory as a location
for browser cache files would violate rule #2.

1.2.3 Access Protocol

All of this talk of directory services makes it is easy to forget that LDAP is a protocol. It is not uncommon to hear
someone refer to an LDAP server or LDAP tree. | have done so and will continue to do so. LDAP does provide a
treelike view of data, and it is this treelike view to which people refer when speaking of an LDAP server.

This introduction won't go into the specifics of the actual protocol. It is enough to think of LDAP as the message-
based, client/server protocol defined in RFC 2251. LDAP is asynchronous (although many development kits provide
both blocking and nonblocking APIs), meaning that a client may issue multiple requests and that responses to
those requests may arrive in an order different from that in which they were issued. Notice in Figure 1-3 that the
client sends Requests 1 and 2 prior to receiving a response, and the response to Request 3 is returned before the
response to Request 2.

Figure 1-3. LDAP requests and responses

Responze 2 |

... DAPdient Request] . DAPserver
1 E Fiequest 7 : E
H i fizsporse 1 : i
i I | Request3 : i
! """"--..._‘_‘/ i ' - i
! H Resporse 3 2 - H

More aspects of programming with LDAP operations will be covered in Chapter 10.

[Team LiB] [<ereviovs)

[Team LB] [<ereviovs)

1.3 LDAP Models

LDAP models represent the services provided by a server, as seen by a client. They are abstract models that
describe the various facets of an LDAP directory. RFC 2251 divides an LDAP directory into two components: the
protocol model and the data model. However, in Understanding and Deploying LDAP Directory Services, by
Timothy A. Howes, Mark C. Smith, and Gordon S. Good (MacMillan), four models are defined:

Information model

The information model provides the structures and data types necessary for building an LDAP directory tree.
An entry is the basic unit in an LDAP directory. You can visualize an entry as either an interior or exterior
node in the Directory Information Tree (DIT). An entry contains information about an instance of one or
moreobj ect Cl asses. These obj ect Cl asses have certain required or optional attributes. Attribute types
have defined encoding and matching rules that govern such things as the type of data the attribute can hold
and how to compare this data during a search. This information model will be covered extensively in the
next chapter when we examine LDAP schema.

Naming model

The naming model defines how entries and data in the DIT are uniquely referenced. Each entry has an
attribute that is unique among all siblings of a single parent. This unique attribute is called the relative
distinguished name (RDN). You can uniquely identify any entry within a directory by following the RDNs of
all the entries in the path from the desired node to the root of the tree. This string created by combining
RDNs to form a unique name is called the node's distinguished name (DN).

InFigure 1-4, the directory entry outlined in the dashed square has an RDN of cn=geral d carter. Note that the
attribute name as well as the value are included in the RDN. The DN for this node would be cn=geral d
carter, ou=peopl e, dc=pl ainjoe, dc=org.

Functional model

The functional model is the LDAP protocol itself. This protocol provides the means for accessing the data in
the directory tree. Access is implemented by authentication operations (bindings), query operations
(searches and reads), and update operations (writes).

Security model

The security model provides a mechanism for clients to prove their identity (authentication) and for the
server to control an authenticated client's access to data (authorization). LDAPv3 provides several
authentication methods not available in previous protocol versions. Some features, such as access control
lists, have not been standardized yet, leaving vendors to their own devices.

Figure 1-4. Example LDAP directory tree

LDAP directory information tree (DIT)

de=plainjoe,de=ung

nu=devices
attbule pes ord vlpes

! m; perald carter
objectClass: persan
srccarter

 [telephonslumber. 555-1434

en=qerakd carter

B oo g deog
RN

At this high level, LDAP is relatively simple. It is a protocol for building highly distributed directories. In the next
chapter, we will examine certain LDAP concepts such as schemas, referrals, and replication in much more depth.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

Chapter 2. LDAPv3 Overview

Chapter 1 should have helped you understand the characteristics of a directory in general, and an LDAP directory in
particular. If you still feel a little uncomfortable about LDAP, relax. This chapter is designed to flesh out some of
the details that we glossed over. Your immediate goal should be to understand the basic building blocks of any
LDAPv3 directory server. In the next chapter, we will start building an LDAP directory.

[Team Lig] [eeevious]

[Team LB] [<ereviovs)

2.1LDIF

Most system administrators prefer to use plain-text files for server configuration information, as opposed to some
binary store of bits. It is more comfortable to deal with data in vi, Emacs, or notepad than to dig though raw bits
and bytes. Therefore, it seems fitting to begin an exploration of LDAP internals with a discussion of representing
directory data in text form.

TheLDAP Interchange Format (LDIF), defined in RFC 2849, is a standard text file format for storing LDAP
configuration information and directory contents. In its most basic form, an LDIF file is:

e A collection of entries separated from each other by blank lines
e A mapping of attribute names to values
e A collection of directives that instruct the parser how to process the information

The first two characteristics provide exactly what is needed to describe the contents of an LDAP directory. We'll
return to the third characteristic when we discuss modifying the information in the directory in Chapter 4.

LDIF files are often used to import new data into your directory or make changes to existing data. The data in the
LDIF file must obey the schema rules of your LDAP directory. You can think of the schema as a data definition for
your directory. Every item that is added or changed in the directory is checked against the schema for correctness.
Aschema violation occurs if the data does not correspond to the existing rules.

Figure 2-1 shows a simple directory information tree. Each entry in the directory is represented by an entry in the
LDIF file. Let's begin with the topmost entry in the tree labeled with the distinguished name (DN)
dc=pl ai nj oe, dc=org:

LDIF listing for the entry dn: dc=pl ainj oe, dc=org
dn: dc=pl ai nj oe, dc=org

obj ectCl ass: donai n

dc: plainjoe

Figure 2-1. An LDAP directory tree

LDAP directory information tree (INT)

de=plainjoe,de=ung

nu=devices

v attbule pes ord vlpes

¢ om: gerald carter
objectClass: persan

srccarter

‘ [telephonelumber 555-1234

WL e dpenio deog
; ROW

We can make a few observations about LDIF syntax on the basis of this short listing:
e Comments in an LDIF file begin with a pound character (#) at position one and continue to the end of the
current line.

e Attributes are listed on the lefthand side of the colon (:), and values are presented on the righthand side. The
colon character is separated from the value by a space.

e Thedn attribute uniquely identifies theDN of the entry.

2.1.1 Distinguished Names and Relative Distinguished Names

It is important to realize that the full DN of an entry does not actually need to be stored as an attribute within that
entry, even though this seems to be implied by the previous LDIF extract; it can be generated on the fly as
needed. This is analogous to how a filesystem is organized. A file or directory does not store the absolute path to
itself from the root of the filesystem. Think how hard it would be to move files if this were true.

If the DN is like the absolute path between the root of a filesystem and a file, a relative distinguished name (RDN)
is like a filename. We've already seen that a DN is formed by stringing together the RDNs of every entity from the
element in question to the root of the directory tree. In this sense, an RDN works similarly to a filename. However,
unlike a filename, an RDN can be made up of multiple attributes. This is similar to a compound index in a relational
database system in which two or more fields are used in combination to generate a unique index key.

While a multivalued RDN is not shown in our example, it is not hard to imagine. Suppose that there are two
employees named Jane Smith in your company: one in the Sales Department and one in the Engineering
Department. Now suppose the entries for these employees have a common parent. Neither the common name
(cn) nor the organizational unit (ou) attribute is unique in its own right. However, both can be used in combination
to generate a unique RDN. This would look like:

Exanpl e of two entries with a nultivalued RDN
dn: cn=Jane Snith+ou=Sal es, dc=pl ai nj oe, dc=org
cn: Jane Smith

ou: Sal es

<...remai nder of entry deleted...>

dn: cn=Jane Snit h+ou=Engineeri ng, dc=pl ai nj oe, dc=or g
cn: Jane Smith

ou: Engi neeri ng

<...remai nder of entry deleted...>

For both of these entries, the first component of the DN is an RDN composed of two values: cn=Jane
Sm t h+ou=Sal es and cn=JaneSm t h+ou=Engi neeri ng.

In the multivalued RDN, the plus character (+) separates the two attribute values used to form the RDN. What if
one of the attributes used in the RDN contained the + character? To prevent the + character from being
interpreted as a special character, we need to escape it using a backslash (\). The other special characters that
require a backslash-escape if used within an attribute value are:

e A space or pound (#) character occurring at the beginning of the string
e A space occurring at the end of the string

e Acomma (,), a plus character (+), a double quote ("), a backslash (\), angle brackets (< or >), or a
semicolon (;)

Although multivalued RDNs have their place, using them excessively can become confusing, and can often be
avoided by a better namespace design. In the previous example, it is obvious that the multivalued RDN could be
avoided by creating different or gani zat i onal Unit s (ou) in the directory for both Sales and Engineering, as
illustrated in Figure 2-2. Using this strategy, the DN for the first entry would be cn=Jane

Sm t h, ou=Sal es, dc=pl ai nj oe, dc=or g. This design does not entirely eliminate the need for multivalued RDNs;
we could still have two people named Jane Smith in the Engineering organization. But that will occur much less
frequently than having two Jane Smiths in the company. Look for ways to organize namespaces to avoid
multivalued RDNs as much as is possible and logical.

Figure 2-2. A namespace that represents Jane Smith with a unique, multivalued RDN

de=plainjoe, dc=omy

ou=Engineering ou=5aks

m=Jane Smith cn=lane Smith

One final note about DNs.RFC 2253 defines a method of unambiguously representing a DN using a UTF-8 string
representation. This normalization process boils down to:
e Removing all nonescaped whitespace surrounding the equal sign (=) in each RDN
e Making sure the appropriate characters are escaped
e Removing all nonescaped spaces surrounding the multi-value RDN join character (+)
e Removing all nonescaped trailing spaces on RDNs
Therefore, the normalized version of:
cn=geral d carter + ou=sales, dc=plainjoe ,dc=org
would be:
cn=geral d carter+ou=sal es, dc=pl ai nj oe, dc=org

Without getting ahead of ourselves, | should mention that the string representation of a distinguished name is
normally case-preserving, and the logic used to determine if two DNs are equal is usually a case-insensitive match.
Therefore:

cn=Ceral d Carter,ou=People, dc=plai njoe, dc=org
would be equivalent to:
cn=geral d carter, ou=peopl e, dc=pl ai njoe, dc=org

However, this case-preserving, case-insensitive behavior is based upon the syntax and matching rules (see Section
2.2 later in this chapter) of the attribute type used in each relative component of the complete DN. So while DNs
are often case-insensitive, do not assume that they will always be so.

Subsequent examples use the normalized versions of all DNs to prevent confusion, although | may tend to be lax
on capitalization.

2.1.2 Back to Our Regularly Scheduled Program . . .

Going back to Figure 2-1, your next question is probably, "Where did the extra lines in the LDIF listing come from?
" After all, the top entry in Figure 2-1 is simply dc=pl ai nj oe, dc=or g. But the LDIF lines corresponding to this
entry also contain an obj ect Cl ass: line and a dc: line. These extra lines provide additional information stored
inside each entry. The next few sections answer the following questions:

What is an attribute?

What does the value of the obj ect Cl ass attribute mean?

What is the dc attribute?

Ifdc=pl ai nj oe, dc=org is the top entry in the directory, where is the entry for dc=or g?

[Team LiB] [ereviovs)

[Team LB] [<ereviovs)

2.2 What Is an Attribute?

The concepts of attribute types and attribute syntax were mentioned briefly in the previous chapter. Attribute
types and the associated syntax rules are similar to variable and data type declarations found in many
programming languages. The comparison is not that big of a stretch. Attributes are used to hold values. Variables
in programs perform a similar task—they store information.

When a variable is declared in a program, it is defined to be of a certain data type. This data type specifies what
type of information can be stored in the variable, along with certain other rules, such as how to compare the
variable's value to the data stored in another variable of the same type. For example, declaring a 16-bit integer
variable in a program and then assigning it a value of 1,000,000 would make no sense (the maximum value
represented by a signed 16-bit integer is 32,767). The data type of a 16-bit integer determines what data can be
stored. The data type also determines how values of like type can be compared. Is 3 < 57? Yes, of course it is. How
do you know? Because there exists a set of rules for comparing integers with other integers. The syntax of LDAP
attribute types performs a similar function as the data type in these examples.

Unlike variables, however, LDAP attributes can be multivalued. Most procedural programming languages today
enforce "store and replace” semantics of variable assignment, and so my analogy falls apart. That is, when you
assign a new value to a variable, its old value is replaced. As you'll see, this isn't true for LDAP; assigning a new
value to an attribute adds the value to the list of values the attribute already has. Here's the LDIF listing for the
ou=devi ces, dc=pl ai nj oe, dc=or g entry from Figure 2-1; it demonstrates the purpose of multivalued attributes:

LDIF listing for dn: ou=devi ces, dc=pl ai nj oe, dc=org
dn: ou=devi ces, dc=pl ai nj oe, dc=org
obj ectcl ass: organi zati onal Uni t
ou: devices
t el ephoneNunber: +1 256 555-5446
t el ephoneNunber: +1 256 555-5447
description: Container for all network enabled
devi ces exi sting within the plainjoe.org domain

- Note that the descri pti on attribute spans two lines. Line continuation in LDIF is
F I implemented by leaving exactly one space at the beginning of a line. LDIF does not require
L
w #: abackslash (\) to continue one line to the next, as is common in many Unix configuration
© files.

The LDIF file lists two values for the t el ephoneNunber attribute. In real life, it's common for an entity to be
reachable via two or more phone numbers. Be aware that some attributes can contain only a single value at any
given time. Whether an attribute is single- or multivalued depends on the attribute's definition in the server's
schema. Examples of single-valued attributes include an entry's country (c), displayable name (di spl ayNane), or
a user's Unix numeric ID (ui dNunber).

2.2.1 Attribute Syntax

An attribute type's definition lays the groundwork for answers to questions such as, "What type of values can be
stored in this attribute?", "Can these two values be compared?", and, if so, "How should the comparison take
place?”

Continuing with our t el ephoneNunber example, suppose you search the directory for the person who owns the
phone number 555-5446. This may seem easy when you first think about it. However, RFC 2252 explains that a
telephone number can contain characters other than digits (0-9) and a hyphen (-). A telephone number can
include:

e 0-9

e Various punctuation characters such as commas, periods, parentheses, hyphens, colons, question marks, and
spaces

555.5446 or 555 5446 are also correct matches to 555-5446. What about the area code? Should we also use it in
a comparison of phone numbers?

Attribute type definitions include matching rules that tell an LDAP server how to make comparisons—which, as
we've seen, isn't as easy as it seems. In Figure 2-3, taken from RFC 2256, the t el ephoneNunber attribute has
two associated matching rules. The t el ephoneNunber Mat ch rule is used for equality comparisons. While RFC
2552 defines t el ephoneNunber Mat ch as a whitespace-insensitive comparison only, this rule is often implemented
to be case-insensitive as well. The t el ephoneNunber Subst ri ngsMat ch rule is used for partial telephone number
matches—for example, when the search criteria includes wildcards, such as "555*5446".

Figure 2-3. telephoneNumber attribute type definition

attributetype definition for telephoneMumber

From RFC 2256

attributetype (2.5.4.20 NAME 'telephoneNumber'
Matching rules —=| EQUALITY telephoneNumberMatch
SUBSTR telephoneNumbersubstringsMatch
Encoding rules —»| SYNTAX 1.3.6.1.4.1.1466.115.121.1.50§32})

Recommended minimum far
the langest length of data

TheSYNTAX keyword specifies the object identifier (OID) of the encoding rules used for storing and transmitting
values of the attribute type. The number enclosed by curly braces ({ }) specifies the minimum recommended
maximum length of the attribute's value that a server should support.

Object Identifiers (OIDs)

LDAPV3 uses OIDs such as those used in SNMP MIBs. SNMP OIDs are allocated by the Internet
Assigned Numbers Authority (IANA) under the mgmt(2) branch of the number space displayed in
Figure 2-4. Newly created LDAPv3 OIDs generally fall under the private(4), enterprise(1) branch of the
tree. However, it is also common to see numbers under the joint-1SO-ccitt(2) branch of the number
tree. OIDs beginning with 2.5.4 come from the user attribute specifications defined by X.500.

An OID is a string of dotted numbers that uniquely identifies items such as attributes, syntaxes, object
classes, and extended controls. The allocation of enterprise numbers by IANA is similar to the central
distribution of IP address blocks; once you have been assigned an enterprise number by the 1ANA, you
can create your own OIDs underneath that number. Unlike the IP address space, there is no limit to
the number of OIDs you can create because there's no limit to the length of an OID.

For example, assume that you were issued the enterprise number 55555. Therefore, all OIDs
belonging to your branch of the OID tree would begin with 1.3.6.1.4.1.55555. How this subtree is
divided is at your discretion. You may choose to allocate 1.3.6.1.4.1.55555.1 to department A and
1.3.5.1.4.1.55555.2 to department B. Each allocated branch of your OID is referred to as an arc. The
local administrators of these departments could then subdivide their arcs according to the needs of
their network.

OID assignments must be unique worldwide. If you ever need to make custom schema files for your
directory (a common practice), go to http://www.iana.org/cgi-bin/enterprise.pl and request a private
enterprise number. The form is short and normally takes one to two weeks to be processed. Once you
have your own enterprise number, you can create your own OIDs without worrying about conflicts
with OIDs that have already been assigned. RFC 3383 describes some best practices for registering
new LDAP values with IANA.

Figure 2-4. Private enterprise OID number space

http://www.iana.org/cgi-bin/enterprise.pl

Roat
|
I |

ceitt|0]) 1501} joint-150-coi2)
argl3)
dod(6)
internet(1)
1
| | |
directory| 1} magmit{2] axperimental3) F"i"'ilbﬁ'|4|
enterprise(1)

2.2.2 What Does the Value of the objectClass Attribute Mean?

All entries in an LDAP directory must have an obj ect Cl ass attribute, and this attribute must have at least one
value. Multiple values for the obj ect Cl ass attribute are both possible and common given certain requirements, as
you shall soon see. Each obj ect Cl ass value acts as a template for the data to be stored in an entry. It defines a
set of attributes that must be present in the entry and a set of optional attributes that may or may not be present.

Let's go back and reexamine the LDIF representation of the ou=devi ces, dc=pl ai nj oe, dc=or g entry:

LDIF listing for dn: ou=devi ces, dc=pl ai nj oe, dc=org
dn: ou=devi ces, dc=pl ai nj oe, dc=org
obj ectcl ass: organi zati onal Unit
ou: devices
t el ephoneNunber: +1 256 555-5446
t el ephoneNunber: +1 256 555-5447
description: Container for all network enabled
devi ces existing within the plainjoe.org domain

In this case, the entry's obj ect Cl ass is an organi zat i onal Unit . (The schema definition for this is illustrated by

two different representations in Figure 2-5.) The listing on the right shows the actual definition of the
obj ect Cl ass from RFC 2256; the box on the left summarizes the required and optional attributes.

Figure 2-5. organizationalUnit object class

objectClass:omganizaticnalllnit

ou: T

userPassword:

searchiuide: m;mm_‘ # erganizatisnalinit ebjectClass definition frem

seedbka # RFC2256

husinessCategary: | (H%WE '‘erganizationalUnit' SUP top STRUCTURAL

E121Address: MAY [userFassword § searchGulde § seehlso &

reglteradiddress: businessCategery $ xilihddress § replsteredhddress 3
inatianindi estinationIndicator $ preferredbeliveryMet

destinationindicatar destinatienIndi $ preferrediel hed $
femedDeiveryMethod: telexbumber $ teletexTerminalldentifier %

perrer : ‘telefhonewumb-er £ internationaliSOifumber

telexumber: facsimileTelephonstlumber § street § postOfflceBox §

tedexTerminalldentifier: | pestallede 3 postalAddress $ physicalDeliveryOfficedams %

telephanebumber; Optional st § 1 % description))

internationalisOHNumber: atributes

facsimileTelephomeNumber:

ane |

postdficeBox

postakiode:

postaliddress:

physicalDeliveryOrfficebame

st

I

description:

Here's how to understand an obj ect Cl ass definition:

Anobj ect Cl ass possesses an OID, just like attribute types, encoding syntaxes, and matching rules.

ThekeywordMUST denotes a set of attributes that must be present in any instance of this object. In this
case, "present” means "possesses at least one value."

_-‘~ To represent a zero-length attribute value in LDIF syntax, the attribute name must be
. followed by a colon and zero or more spaces, and then a CRor CF LF. For example,
-,
w f;. the following LDIF line stores a zero-length description:

description: <ENTER>

o ThekeywordMAY defines a set of attributes whose presence is optional in an instance of the object.

e ThekeywordSUP specifies the parent object from which this object was derived. A derived object possesses
all the attribute type requirements of its parent. Attributes can be derived from other attributes as well,
inheriting the syntax of its parent as well as matching rules, although the latter can be locally overridden by
the new attribute. LDAP objects do not support multiple inheritance; they have a single parent object, like
Java objects.

e |t is possible for two object classes to have common attribute members. Because the attribute type
namespace is flat for an entire schema, the t el ephoneNunber attribute belonging to an
organi zat i onal Unit is the same attribute type as the t el ephoneNunber belonging to some other object
class, such as a per son (which is covered later in this chapter).

Object Class Types

Three types of object class definitions are used in LDAP directory servers:
Structural object classes

Represent a real-world object, such as a per son or an organi zat i onal Uni t . Each entry
within an LDAP directory must have exactly one structural object class listed in the
obj ect Cl ass attribute. According to the LDAP data model, once an entry's structural object
class has been instantiated, it cannot be changed without deleting and re-adding the entire
entry.

Auxiliary object classes

Add certain characteristics to a structural class. These classes cannot be used on their own, but
only to supplement an existing structural object. There is a special auxiliary object class
referred to in RFC 2252 named ext ensi bl eObj ect , which an LDAP server may support. This
object class implicitly includes all attributes defined in the server's schema as optional
members.

Abstract object classes

Act the same as their counterparts in object-oriented programming. These classes cannot be
used directly, but only as ancestors of derived classes. The most common abstract class relating
to LDAP (and X.500) that you will use is the t op object class, which is the parent or ancestor of
all LDAP object classes.

Note that the type of an object cannot be changed by a derived class.

[TeamLiB] [<ereviovs)

[Team LB] [<ereviovs)

2.3 What Is the dc Attribute?

Returning to our discussion of the topmost entry in Figure 2-1, we can now explain the meaning of the domai n
object class and the dc attribute. Here is the original LDIF listing for the entry:

LDIF listing for the entry dn: dc=pl ainj oe, dc=org
dn: dc=pl ai nj oe, dc=org

obj ectcl ass: domai n

dc: plainjoe

The original recommendation for dividing the X.500 namespace was based on geographic and national regions. You
frequently see this convention in LDAP directories as well, given the heritage that LDAP shares with X.500. For
example, under X.500, the distinguished name for a directory server in the plainjoe.org domain might be:

dn: o=pl ai nj oe, | =AL, c=US

Here, the o attribute is the organi zat i onNane, the | attribute is the locality of the organization, and the c
attribute represents the country in which the organization exists. However, there is no central means of registering
such names, and therefore no general way to refer to the naming context of a directory server. RFC 2247
introduced a system by which LDAP directory naming contexts can be piggybacked on top of an organization's
existing DNS infrastructure. Because DNS domain names are guaranteed to be unique across the Internet and can
be located easily, mapping an organization's domain name to an LDAP DN provides a simple way of determining
the base suffix served by a directory and ensures that the naming context will be globally unique.

"_—"~ A directory's naming context is the DN of its topmost entry. The naming context of the
- directory in our examples is dc=pl ai nj oe, dc=org. This context is used by the LDAP
)
. 4+ server to determine whether it will be able to service a client request. For example, our

directory server will return an error (or possibly a referral) to a client who attempts to look
up the information in an entry named cn=geral dcart er, ou=peopl e, dc=taco, dc=org
because the entry would be outside our naming context.

However, the server would search the directory (and return no information) if the client
attempts to look up cn=geral dcart er, ou=peopl e, dc=taco, dc=pl ai nj oe, dc=org. In
this case, the directory's naming context does match the rightmost substring of the
requested entry's DN. The server just does not have any information on the entry.

To support a mapping between a DNS domain name and an LDAP directory namespace, RFC 2247 defines two
objects, shown in Figures 2-6 and 2-7, for storing domain components. The dcObj ect is an auxiliary class to
augment an existing entry containing organizational information (e.g., an organi zat i onal Uni t). The domai n
object class acts as a standalone container for both the organizational information and the domain name
component (i.e., the dc attribute). The organi zati onal Unit and domai n objects have many common attributes.

Figure 2-6. domain object class

objectllass domain

de
userPassward:
searchGuide: .
seeAlsn: mﬂ,ﬁ
businessCategry: ¥ domain objectClass definition from
a1 2 Address: o REC2247
registerediddress [ﬂ,ﬂ.ii&ﬁl%ﬂﬂiﬂﬂ,lﬂﬂ.d,13 NAME “damain’ SUP top STRUCTURAL
destinationindicator: FUST de
erflerrer;e:mﬁﬂler[hmd- MAY [userPassword % searchGulde 3 sesdlso 3
P : businessCategory § x121Address 3 :e?ste:ede:ess 3
telexbumber: destinationIndizater § preferredbeliveryMethod %
telexTamminalldentifier; telexbumber 3 teletexTerminalldentifier 3 telephoneNumber 3
telaphanebiumber; internationalisOnNumber § facsimileTelephoneNumber 3
snaliSONNumber: street § postOfficeBox § postalCode 3 postalAddress §

internatioralisDHNumber: physicalDeliveryDfficeName 5 st § 1 § description 5 ¢ %
facsimileTelephoneNumber: | assaciatediams § }
o Opthonal

’ atfribules
postOfficeBax
postakiode: _|
postaliddress;

physicalDeliveryDfficeMame:
1M

I

description
associatedMame:

Figure 2-7. dcObject object class

ohjectClzss:deDbjact

i # dcObject objectClass definition
i # from RFC2247

[1.3.6.1.4.1.1466.344 NAME 'doDbject’

Boquired
attibutes * gpp tuE ?ummv

Generating an LDAP DN to represent a DNS domain name is a simple process. An empty DN is used as a starting
point. An RDN of dc=domai nconponent is appended to the DN for each portion of the domain name. For
example, the domain name plainjoe.org maps to our naming context of dc=pl ai nj oe, dc=org.

2.3.1 Where Is dc=org?

As we saw in the previous section, dc=pl ai nj oe, dc=or g is the directory's naming context. If the directory's root
entry was dc=or g, with a child entry of dc=pl ai nj oe, dc=or g, then the naming context would have been

dc=or g. Our server would then unnecessarily respond to queries for any entry whose DN ended with dc=or g, even
though it only has knowledge of entries underneath dc=pl ai nj oe, dc=org.

In this respect, designing an LDAP namespace is similar to designing a DNS hierarchy. Domain name servers for

plainjoe.org have no need to service requests for the .org domain. These requests should be referred to the server
that actually contains information about the requested hosts.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

2.4 Schema References

One of the most frequent questions asked by newly designated LDAP administrators is, "What do all of these
abbreviations mean?" Of course, the question refers to things such as cn,c, and sn. There is no single source of
information describing all possible LDAPv3 attribute types and object classes, but there are a handful of online sites
that can be consulted to cover the most common schema items:

RFC 3377 and related LDAPv3 standards (http://www.rfc-editor.org/)

The documents outlined in RFC 3377 provide a list of references for researching related LDAPv3 and X.500
topics.RFC 2256 in particular describes a set of X.500 schema items used with LDAPv3 directory servers.
LDAP Schema Viewer (http://ldap.akbkhome.com/)

This site, maintained by Alan Knowles, provides a nice means of browsing descriptions and dependencies
among common LDAP attributes, object classes, and OIDs.
Object Identifiers Registry (http://www.alvestrand.no/objectid/)

This site can be helpful in tracking down the owner of specific OID arcs.
Sun Microsystems Product Documentation (http://docs.sun.com)

TheSunOne Directory Server, formerly owned by Netscape Communications, includes a large set of
reference documentation on various LDAP schema items. Even if you are not using the SunOne DS product,
the schema reference can be helpful in understanding the meaning of various LDAP acronyms. Search the
site for "LDAP schema reference" to locate the most recent versions of the product documentation.

[Team Lig] [rrevious]

http://www.rfc-editor.org/
http://ldap.akbkhome.com/
http://www.alvestrand.no/objectid/
http://docs.sun.com

[Team LB] [<ereviovs)

2.5 Authentication

Why is authentication needed in an LDAP directory? Remember that LDAP is a connection-oriented, message-based
protocol. The authentication process is used to establish the client's privileges for each session. All searches,
queries, etc. are controlled by the authorization level of the authenticated user.

Figure 2-8 describes the per son object class and gives you an idea of what other attributes are available for the
cn=geral dcarter entry in Figure 2-1. In particular, you will need to define a user Passwor d attribute value to
further explore LDAP authentication.

Figure 2-8. person objectClass

objectClass: parson

an:
8 . # orpanizationalUnit objectClass definition from
I — fequired & pRC 2256

userPassond: omnbutes (5.5,6.6 NAME ‘person’ SUP top STRUCTURAL
telephoneNumber L h

seahlso; MAY [userPassword % telephoneNusber § seedlsoc %
description: description))

1 Optiovnl T
attribules

The LDIF representation for the expanded version cn=geral dcarter is:

dn: cn=geral d carter,ou=peopl e, dc=pl ai nj oe, dc=org
obj ectCl ass: person

cn: gerald carter

sn: carter

t el ephoneNunber: 555-1234

user Passwor d: { MG} Xr4i | @4PCOg3a@qbuaQ®:= =

We have added an attribute named user Passwor d. This attribute stores a representation of the credentials
necessary to authenticate a user. The prefix (in this case, { MD5}) describes how the credentials are encoded. The
value in this case is simply the Base64 encoding of the MD5 hash of the word "secret."

RFC 2307 defines prefixes for several encryption algorithms. These are vendor-dependent, and you should consult
your server's documentation to determine which are supported. Generating user Passwor d values will be covered

in more detail in the context of various programming languages and APIs in later chapters. Some common
encoding types are:

{ CRYPT}

The password hash should be generated using the local system's crypt () function, which is normally
included in the standard C library. The { CRYPT} prefix will be seen quite a bit in Chapter 6 when we discuss

using LDAP as a replacement for NIS.
{ MD5}

The password hash is the Base64 encoding of the MD5 digest of the user's password.
{ SHA} (Secure Hash Algorithm)

The password hash is the Base64 encoding of the 160-bit SHA-1 hash (RFC 3174) of the user's password.
{ SSHA} (Salted Secure Hash Algorithm)

This password-hashing algorithm developed by Netscape is a salted version of the previous SHA-1
mechanism.{ SSHA} is the recommended scheme for securely storing password information in an LDAP
directory.

The act of being authenticated by an LDAP directory is called binding. Most users are accustomed to providing a
username and password pair when logging onto a system. When authenticating an LDAP client, the username is
specified as a DN—in our example, cn=geral dcart er, ou=peopl e, dc=pl ai nj oe, dc=or g. The credentials used

to authenticate this entry are given by the value of the user Passwor d attribute.

The LDAPV3 specifications define several mechanisms for authenticating clients:

e Anonymous Authentication

Simple Authentication

Simple Authentication over SSL/TLS

Simple Authentication and Security Layer (SASL)

2.5.1 Anonymous Authentication

Anonymous Authentication is the process of binding to the directory using an empty DN and password. This form of
authentication is very common; it's frequently used by client applications (for example, email clients searching an
address book).

2.5.2 Simple Authentication

ForSimple Authentication, the login name in the form of a DN is sent with a password in clear text to the LDAP
server. The server then attempts to match this password with the user Passwor d value, or with some other
predefined attribute that is contained in the entry for the specified DN. If the password is stored in a hashed
format, the server must generate the hash of the transmitted password and compare it to the stored version.
However, the original password has been transmitted over the network in the clear. If both passwords (or
password hashes) match, the client is successfully authenticated. While this authentication method is supported by
virtually all existing LDAP servers (including LDAPv2 servers), its major drawback is its dependency on the client
transmitting clear-text values across the network.

2.5.3 Simple Authentication Over SSL/TLS

If sending usernames and passwords over the network is not particularly tasty to you, perhaps wrapping the
information in an encrypted transport layer will make it more palatable. LDAP can negotiate an encrypted transport
layer prior to performing any bind operations. Thus, all user information is kept secure (as well as anything else
transmitted during the session).

There are two means of using SSL/TLS with LDAPv3:
e LDAP over SSL (LDAPS - tcp/636) is well supported by many LDAP servers, both commercial and open
source. Although frequently used, it has been deprecated in favor of the StartTLS LDAP extended operation.

e RFC 2830 introduced an LDAPv3 extended operation for negotiating TLS over the standard tcp/389 port. This
operation, which is known as StartTLS, allows a server to support both encrypted and nonencrypted sessions
on the same port, depending on the clients' requests.

With the exception of the transport layer security negotiation, the binding process is the same as for Simple
Authentication.

"_-‘~ Designers of LDAPv3 defined two pieces of functionality, Extended Operations and
o Controls, to allow for additions to the original protocol without requiring a new version to
)
w #: be standardized. LDAP Controls apply only to individual requests and responses, similar to

the way an adjective extends a noun. Depending on the client's needs, if a server does not
support a specified Control, the request may fail, or the Control may simply be ignored and
the request will continue normally. An Extended Operation is the equivalent of defining a
new word that must be understood by both the client and server.

2.5.4 Simple Authentication and Security Layer (SASL)

SASL is an extensible security scheme defined in RFC 2222 that can be used to add additional authentication
mechanisms to connection-oriented protocols such as IMAP and LDAP. In essence, SASL supports a pluggable
authentication scheme by allowing a client and server to negotiate the authentication mechanism prior to the
transmission of any user credentials.

In addition to negotiating an authentication mechanism, the communicating hosts may also negotiate a security
layer (such as SSL/TLS) that will be used to encrypt all data during the session. The negotiation of transport layer
security within SASL is not related either to the StartTLS Extended Operation or to LDAPS.

RFC 2222 defines the several authentication schemes for SASL, including:

e Kerberos v4 (KERBEROS_V4)

e TheGeneric Security Service Application Program Interface, Version 2 (GSSAPI), which is defined in RFC
2078

e TheS/Key mechanism (SKEY), which is a one-time password scheme based on the MD5 message digest
algorithm

e TheExternal (EXTERNAL) mechanism, which allows an application to make use of a user's credentials
provided by a lower protocol layer, such as authentication provided by SSL/TLS

In addition to these, RFC 2831 has added an SASL/DIGEST-MD5 mechanism. This mechanism is compatible with
HTTP/1.1 Digest Access Authentication.

During the binding process, the client asks the server to authenticate its request using a particular SASL plug-in.
The client and server then perform any extra steps necessary to validate the user's credentials. Once a success or
failure condition has been reached, the server returns a response to the client's bind request as usual, and LDAP
communication continues normally.

[Team LiB] [<ereviovs)

[Team LB] [<ereviovs)

2.6 Distributed Directories

At this point we have completed examining the simple directory of Figure 2-1. Since we have covered the basics,
let's expand Figure 2-1 to create a distributed directory. In a distributed directory, different hosts possess different
portions of the directory tree.

Figure 2-9 illustrates how the directory would look if the peopl eou were housed on a separate host. There are
many reasons for distributing the directory tree across multiple hosts. These can include, but are not limited to:

Performance

Perhaps one section of the directory tree is heavily used. Placing this branch on a host by itself lets clients
access the remaining subtrees more quickly.
Geographic location

Are all the clients that access a particular branch of the directory in one location? If so, it would make more
sense to place this section of the directory closer to the client hosts that require it. In this way, trips across a
possibly slow WAN link can be avoided.

Administrative boundaries

It is sometimes easier to delegate administrative control of a directory branch by placing the branch on a
server controlled by the group responsible for the information in that branch. In this way, the server
operators can have full access for duties such as replication and backups without interfering with a larger,
more public server.

Figure 2-9. Building a distributed directory

LDAR directory information tree (DNT)

{server].plainjoe.org)

ou=devices

de=plainjoe, dc=ong apseeessimmseamnes \

au:penple.dcéplalnpadtznrq

(server plainjoe.org)

cn=gerald carter —e

To divide the directory tree between the two servers in Figure 2-9, you must configure two links between the main
directory server and the server that holds peopl eou. To do so, create the superior and subordinate knowledge
reference links as shown.

Asubordinate knowledge link, often called simply a reference, logically connects a node within a directory tree to
the naming context of another server. Most often, the naming context of the second server is a continuation of the
directory. In this example, the peopl eou in the main directory tree has no children because all queries of entries
in the ou=peopl e, dc=pl ai nj oe, dc=or g tree should be served by the second server. The entry

ou=peopl e, dc=pl ai nj oe, dc=0r g on the main directory server is now a placeholder that contains the referral to
the actual directory server for this entry. Figure 2-10 shows the definition for the the r ef erral object class
defined in RFC 3296.

Figure 2-10. The referral object class

objectClass: referral

ref —|
) (2.16.840.1.113730.3.2.6
Feguied NAME "referral’
attributes DESC ‘named subordinate reference ohject’

K Eal
MUST ref])

LDAPv2 servers based on the original University of Michigan LDAP server supported an
experimental means of using referrals that is incompatible with the standardized referrals
included in LDAPV3.

Ther ef erral object contains only a single required attribute, r ef . This attribute holds the URI that points to the
host that contains the subtree. The format of this URI is defined in RFC 2255 as:

I dap://[host:port]/[/dn[?attribute][?scope][?filter][?extensions]]

This syntax will make more sense when we have covered LDAP search parameters in Chapter 4. For our purposes,
the most common URI used as a r ef value looks like:

| dap://[host:port]/dn
For example, the LDIF listing for the new peopl eou entry is:

LDIF listing for the entry ou=peopl e, dc=pl ai nj oe, dc=org

dn: ou=peopl e, dc=pl ai nj oe, dc=or g

obj ectCl ass: referral

ref: ldap://server2. pl ainjoe.org/ ou=peopl e, dc=pl ai nj oe, dc=org

Configuring the superior knowledge reference link, also called simply a referral but not to be confused with the

ref erral object class, from the second server back to the main directory is a vendor-dependent operation, so it is
difficult to tell you exactly what to expect. However, the purpose is to define an LDAP URI (just like the one used
as the r ef attribute value) that should be returned to clients who attempt to search or query entries outside of the
naming context of the subordinate server. In the example discussed here, ser ver 2 would be configured to return

| dap: // server 1. pl ai njoe. or g/ dc=pl ai nj oe, dc=or g to all clients who attempt to go outside of

ou=peopl e, dc=pl ai nj oe, dc=or g.

Who should follow the referral link? There are two possible answers:

e The server follows and resolves any referrals that it runs into during an LDAP operation. The client receives
only the result and never knows that the referral happened. This is known as “chaining” and is similar to a
recursive DNS server. Chaining has not been standardized. If you are interested, you should consult the
documentation for your server to determine whether chaining is supported.

e The client follows links for itself. The LDAP client library normally follows the link, but the URI can be handed
to the calling application, which is then responsible for following the link itself. This method is supported by
all LDAPv3-compliant clients and servers.

"_-‘~ There is one more mechanism for redirecting a client. An alias is a symbolic link in the
o directory pointing from one entry to another (possibly on a different server). Aliases can be
L
w f;. used only on an entry, not on individual attributes. There may be specific situations that

require the use of aliases, but these are likely to be few. For this reason, aliases are not
stressed beyond the discussion here.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

2.7 Continuing Standardization

LDAP is continuing to evolve as a protocol. There are currently two working groups within the IETF to help
shepherd this process:

e TheLDAP Duplication/Replication/Update Protocols (LDUP) working group focuses on data replication and
consistency in LDAP directories. More information on the group's current activities can be found at
http://ietf.org/html.charters/Idup-charter.html.

e ThelLDAPv3 Revision (LDAPbis) working group directs its efforts toward attempting to clarify parts of the
original LDAPV3 specifications. This does not include work on a Version 4 of the LDAP protocol. More
information on the LDAPbis working group can be found at http://ietf.org/html.charters/Idapbis-charter.html.

While not related to standardization processes, the LDAPzone web site (http://www.ldapzone.com) does provide a
nice collection of LDAP-related topics, forums, and downloads.

[Team LiB | [<ereviovs)

http://ietf.org/html.charters/ldup-charter.html
http://ietf.org/html.charters/ldapbis-charter.html
http://www.ldapzone.com

[Team LB] [<ereviovs)

Chapter 3. OpenLDAP

While reading this book, you may find yourself feeling a little like a sky diver who has just jumped out of an
airplane. As you approach the ground, things come more into focus. As you squint and try to make out the color of
that house far below, you suddenly realize that you are plummeting closer and closer toward the very thing you
are trying to observe.

Conceptual ideas need concrete implementations in order to solidify our understanding of them. A directory access
protocol is of no use without an actual implementation that allows us to put the protocol to work to solve real
information problems on a network. This chapter introduces OpenLDAP, a popular, open source LDAPv3-compliant
server. There are a number of popular commercial products, including Sun Microsystem's SunOne directory server
(formally owned by Netscape), Novell's eDirectory (formally referred to as NDS), and Microsoft's Active Directory,
although this directory encompasses much more than just LDAP.

Why are we using the OpenLDAPm server instead of one from another vendor? OpenLDAP is attractive for several
reasons:

[1]1 The "Open" in OpenLDAP refers to the open engineering process and community used to create OpenLDAP
software.

e TheOpenLDAP source code is available for download from http://www.openldap.org/ under the OpenLDAP
Public License. Source code can provide a great deal of information to supplement existing (or absent)
documentation.

e OpenLDAP 2 is compliant with the core LDAPv3 specifications.

e OpenLDAP is available for multiple platforms, including Linux, Solaris, Mac OS 10.2, and Windows (in its
various incarnations). For more information regarding OpenLDAP on Mac OS 10.2, see
http ://www.padl.com//Articles/AdvancedOpenDirectoryConf.html.

e The OpenLDAP project is a continuation of the original University of Michigan LDAP server. The relationship
between Michigan's LDAP server and many modern, commercial LDAP servers can be compared to the
relationship between modern web browsers and the original NCSA Mosaic code base.

The examples presented in this chapter configure OpenLDAP on a Unix-based server. Therefore, they use standard
Unix command-line tools such as tar,gzip, and make.

[Team LiB] [ereviovs)

http://www.openldap.org/
http://www.padl.com//Articles/AdvancedOpenDirectoryConf.html

[Team LB] [<ereviovs)

3.1 Obtaining the OpenLDAP Distribution

TheOpenLDAP project does not make binary distributions of its software available. The reason for this has a lot to
do with the number of dependencies it has on other packages. Many Linux vendors include precompiled versions of
OpenLDAP with their distributions. Still, we'll discuss how to compile the OpenLDAP source code distribution; you'll
need to build OpenLDAP to stay up to date, and studying the build process gives you a chance to learn more about
the LDAP protocol.

_-'~ Symas Corporation also provides some precompiled OpenLDAP packages (including
o requisite software components) for Solaris and HP-UX at http://www.symas.com/.
[l

TSN

The latest version of OpenLDAP can be obtained from http://www.OpenLDAP.org/software/download/. There are
two major incarnations of OpenLDAP. The older 1.2 releases are essentially enhancements or small bug fixes to the
original University of Michigan code base and implement only LDAPv2. The OpenLDAP 2 branch is an LDAPv3-
compliant implementation.

There are several advantages of LDAPv3 over the previous version, such as:

e The ability to refer clients to other LDAP servers for information. The LDAPv2 RFCs contained no provision for
returning a referral to a client. While the University of Michigan server supported an experimental
implementation of referrals, the concept was not standardized until the LDAPv3 specifications.
Standardization made interoperability between servers and clients from different vendors possible, something
that was missing under LDAPV2.

e The ability to publish the server's schema via LDAP operations, which makes it easier for clients to learn the
server's schema before performing searches. The only way to determine the schema supported by an
LDAPv2 server was to examine the server's configuration files. Publishing the server's schema as entries
within the directory allows for such things as real-time updates via standard LDAP operations. (Note that
LDAPv3 does not require dynamic updates.)

e Internationalization support through the use of UTF-8 characters in strings (RFC 2253) and language tags for
attribute descriptions (RFC 2596).

e Improved security and flexibility for authentication credentials and data via SASL and SSL/TLS. LDAPv2
supported only simple binds or Kerberos 4 authentication.

e Support for protocol extensions as a mechanism to enhance existing operations or add new commands
without requiring that a new revision of the LDAP protocol be defined.

The OpenLDAP 2 release is an LDAPv3 server. However, LDAPVv2 clients are not going away anytime soon.
Therefore, OpenLDAP 2 and the majority of other LDAP servers can support both LDAPv2 and v3 clientsI21

[2] Most people are referring to the University of Michigan LDAP client and server implementation when using
the term LDAPv2. LDAPvV2 as specified in the original RFCs has been moved to historic status.

[TeamiB] [<ereviovs)

http://www.symas.com/
http://www.OpenLDAP.org/software/download/

[Team LB] [<ereviovs)

3.2 Software Requirements

The examples presented in this book for building the client tools and server components are based on the latest
OpenLDAP 2.1 release available at the current time (Version 2.1.8). As with any piece of software, version
numbers and dependencies change. Make sure to consult the documentation included with future OpenLDAP
releases before building your server.

Our OpenLDAP server will require several external software packages:

e Support for POSIX threads, either by the operating system or an external library.

e SSL/TLS libraries (such as the OpenSSL package, which is available from http://www.openssl.org/).

e A database manager library that supports DBM type storage facilities. The current library of choice is the
Berkeley DB 4.1 package from Sleepycat Software (http://www.sleepycat.com/).

e Release 2.1 of the SASL libraries from Carnegie Mellon University (http://asg.web.cmu.edu/sasl/sasl-
library.html).

3.2.1 Threads

If your server's operating system supports threads, OpenLDAP 2 can take advantage of this feature. This support
works fine out of the box on most current Linux systems, Solaris, and several other platforms.

If you run into problems related to POSIX thread support, your first option is to check the OpenLDAP.org web site
for installation notes specific to your platform. You may also wish to visit
http://www.gnu.ai.mit.edu/software/pth/related.html for a list of known POSIX thread libraries for Unix systems. It
is possible to disable thread support in the OpenLDAP server, slapd, by specifying the —disable-threads option in
the OpenLDAP configure script prior to compiling. However, the replication helper daemon, slurpd, which is covered
inChapter 5, requires thread support.

3.2.2 SSL/TLS Libraries

RFC 2246 describes TLS 1.0, which resembles SSL 3.0. The StartTLS extended operation defined in RFC 2830
allows LDAP clients and servers to negotiate a TLS session at any point during a conversation (even prior to
authenticating the client). To enable support for this extended operation or the LDAPS protocol, you need to obtain
and install the latest version of the OpenSSL libraries. These can be downloaded from the OpenSSL Project at
http://www.openssl.org/.

Building and installing the OpenSSL libraries is straightforward. Just remember that, as of release 0.9.6g, shared
libraries are not built by default. To build shared libraries, pass the shared option to the OpenSSL build script. The
—openssldir option is used to define the install directory:

$./config shared --openssldir=/usr/local
Then follow with the obligatory:

$ make
$ /bin/su -c "nmake install™

to install the development libraries and tools in /usr/local/.

3.2.3 Database Backend Modules

In order to build a standalone OpenLDAP server, it is necessary to provide libraries for some type of database
manager (DBM). OpenLDAP presently supports two categories of local DB storage. The first, referred to as Idbm,

http://www.openssl.org/
http://www.sleepycat.com/
http://asg.web.cmu.edu/sasl/sasl-
http://www.gnu.ai.mit.edu/software/pth/related.html
http://www.openssl.org/

can use either the GNU Database Manager from the Free Software Foundation (http://www.fsf.org/) or the
BerkeleyDB package from Sleepycat software (http://www.sleepycat.com/). The second database type introduced
in OpenLDAP 2.1, called bdb, has been customized to use only the Berkeley DB 4 libraries. The newer bdb backend
type is preferred to the Idbm interface for servers that maintain local copies of data, such as those we will build in
this book.

To obtain and install the Berkeley DB 4.1 libraries, begin by downloading the source code from
http://www.sleepycat.com/download/index.shtml. Next, extract the source code to a temporary directory such as
/usr/local/src/. This example uses the release 4.1.24:

$ cd /usr/local/src/
$ gzip -dc {path-to-downl oad-directory}/db-4.1.24.tar.gz | tar xvf -

The instructions for building the software on Unix-like systems are linked from the beginning page of the software's
documentation in db-<version>/docs/index.html. For most purposes, this boils down to:

$ cd db-version/build_unix

$../dist/configure --prefix=/usr/local/
$ make

$ /bin/su -c "make install"

You can choose an installation directory other than /usr/local/ as long as you remember to take any necessary
steps to ensure that the libraries and development files can be found by both the Cyrus SASL libraries and
OpenLDAP when compiling these packages.

Once the process is completed, verify that the file libdb-4.1.s0 exists in the lib/ directory below the installation root
(e.g.,/usr/local/lib/).

3.2.4 SASL Libraries

Chapter 2 introduced the concept of pluggable authentication mechanisms. While the SASL libraries are not
required to build OpenLDAP 2, the resulting LDAP server will not be completely LDAPv3-compliant if SASL is
absent.

The Computing Services Department at Carnegie-Mellon University has made a set of SASL libraries available for
download under a BSD-like license. The latest version can be found at ftp://ftp.andrew.cmu.edu/pub/cyrus-mail/.
Thecyrus-sasl libraries v2.1 support several SASL mechanisms, including:

ANONYMOUS

CRAM-MD5

DIGEST-MD5

GSSAPI (MIT Kerberos 5 or Heimdal Kerberos 5)
KERBEROS_ V4

PLAIN
"_-‘* To support the Kerberos plug-ins, you must obtain libraries from either Heimdal Kerberos
o (http://www.pdc.kth.se/heimdal/) or the MIT Kerberos distribution

W #s (http://web.mit.edu/kerberos/www/).

Understanding SASL is somewhat of an undertaking. You don't need to install the SASL libraries if you plan to
support only simple (clear-text) binds and simple binds over SSL/TLS. The most common reasons for requiring
SASL integration with LDAP are Kerberos authentication and integration with other SASL-enabled applications, such
as Sendmail or CMU's Cyrus IMAPD server.

For the sake of flexibility, we will build the server with SASL support. | recommend reading the SASL System
Administrator's HOWTO (sysadmin.html) included as part of the CMU distribution. This document gives some
general setup and configuration information. You may also wish to review the "GSSAPI Tutorial" mentioned in the
HOWTO and the Programmer's Guide. All of these are included in the Cyrus SASL distribution under the doc/
directory. You may also wish to refer to RFC 2222 for a general overview of SASL. The sample/ subdirectory also
includes a program for testing the SASL libraries. Chapter 9 includes examples of using the GSSAPI SASL

http://www.fsf.org/
http://www.sleepycat.com/
http://www.sleepycat.com/download/index.shtml
http://www.pdc.kth.se/heimdal/
http://web.mit.edu/kerberos/www/

mechanism when exploring interoperability with Microsoft's Active Directory.

Building the SASL distribution requires only a few familar steps. In most environments, the following commands
will install the libraries and development files in /usr/local/:

$ gzip -dc cyrus-sasl-2.1.9.tar.gz | tar xf -
$ cd cyrus-sasl-2.1.9
$./configure
$ make
$ /bin/su -c "nmake install &&\
In -s /usr/local/lib/sasl2 [usr/lib/sasl2"

The symbolic link is needed because the SASL library will look for installed mechanisms in /usr/lib/sasl2/ (as
described in the cyrus-sasl documentation).

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

3.3 Compiling OpenLDAP 2

Once the necessary software libraries have been installed and correctly configured, compiling and installing
OpenLDAP becomes a matter defining the appropriate options for the configure script and executing the make
command. For the sake of simplicity, all examples in this book assume that the root directory for the OpenLDAP
installation is /usr/local, which is the default.

Most of the configuration options are set to reasonable defaults or will be set appropriately by the configure script
itself. I've already mentioned the —disable-threads option, which you can use if you don't want thread support.
You should also be aware of the —enable-wrappers option, which uses the tcp_wrappers libraries for restricting
access via the standard /etc/hosts.allow and /etc/hosts.deny. In order to use this option, the tcpd.h header file and
libwrap.a library must be installed on a local system.

_-‘~ For more information on tcp_wrappers, refer to the hosts_access(5) manpage or Wietse
£ Venema's tcp_wrappers web page, which is located at
»,
At f;: ftp://ftp.porcupine.org/pub/security/index.html.

After extracting the source files using the command:
$ gzip -dc openldap-2.1.8.tar.gz | tar xvf -

go into the newly created directory and execute the ./configure script, defining any options you wish to enable or
disable. For example:

$ cd openldap-2. 1.8/
$./configure --enable-wappers

Be sure to examine the output that follows this command to verify that the correct DBM libraries were located and
any other options you defined were correctly configured. Once you are satisfied with the configuration process,
building the OpenLDAP clients and servers is a four-step process:

$ neke depend

$ make

$ make test

$ /bin/su -c "make install"

Here are some things to check if you have any problems:

e On systems that support it, the Idd tool can be used to verify that the LDAP server binary, slapd, is linked
with the correct shared libraries. For example, if libsasl.so cannot be located but is installed in /usr/local/lib/,
check your system's documentation for adding directories to the library search path. Under Linux, add the
directory to /etc/Id.so.conf and rerun Idconfig -v; under Solaris (or Linux), set the LD LI BRARY_PATH
environment variable.

e Verify that DNS resolution for your host is configured correctly. In particular, reverse DNS resolution is
important. Problems with DNS resolution can make it appear that the OpenLDAP server is not responding.

e Verify that the network interface on the host is configured and functioning properly. I experience this
problem quite often when using my laptop as a test server.

[Team LB] [<ereviovs)

[Team LiB]

3.4 OpenLDAP Clients and Servers

The OpenLDAP package includes clients, servers, and development libraries. Table 3-1 gives an overview of the
utilities that come with the package. All pathnames are relative to the installation location, which defaults to

/usr/local.

Table 3-1. Installed components included with OpenLDAP

Name

Description

libexec/slapd

The LDAP server.

libexec/slurpd

The LDAP replication helper.

bin/ldapadd
bin/Idapmodify
bin/Idapdelete

bin/ldapmodrdn

Command-line tools for adding, modifying, and deleting entries on an LDAP server. These
commands support both LDAPv2 and LDAPvV3.

bin/ldapsearch

bin/ldapcompare

Command-line utilities for searching for an LDAP directory or testing a compare operation on a
specific attribute held by an entry.

bin/ldappasswd

A tool for changing the password attribute in LDAP entries. This tool is the LDAP equivalent of /
bin/passwd.

shin/slapadd
shin/slapcat

shin/slapindex

Tools for manipulating the local backend data store used by the slapd daemon.

shin/slappasswd

A simple utility to generate password hashes suitable for use in slapd.conf.

lib/libldap>
lib/liblber*
include/ldap™*.h

include/lber*.h

TheOpenLDAP client SDK.

[Team LiB]

[Team LB] [<ereviovs)

3.5 The slapd.conf Configuration File

Theslapd.conf file is the central source of configuration information for the OpenLDAP standalone server (slapd),
thereplication helper daemon (slurpd), and related tools, such as slapcat and slapadd. As a general rule, the
OpenLDAP client tools such as Idapmodify and Idapsearch use Idap.conf (not slapd.conf) for default settings.

In the tradition of Unix configuration files, slapd.conf is an ASCII file with the following rules:

e Blank lines and lines beginning with a pound sign (#) are ignored.
e Parameters and associated values are separated by whitespace characters (space or tab).

e A line with a blank space in the first column is considered to be a continuation of the previous one. There is
no need for a line continuation character such as a backslash (\).

For general needs, the slapd.conf file used by OpenLDAP 2 can be broken into two sections. The first section
contains parameters that affect the overall behavior of the OpenLDAP servers (for example, the level of
information sent to log files). The second section is composed of parameters that relate to a particular database
backend used by the slapd daemon. It is possible to define some default settings for these in the global section of
slapd.conf. However, any value specified in the database section will override default settings.

Here's a partial listing that shows how these two sections look:

/usr/ 1 ocal / et c/openl dap/ sl apd. conf
G obal section
G obal paraneters renoved for brevity's sake, for now .

HH R R R R
Dat abase #1 - Berkel ey DB
dat abase bdb

Database paraneters and directives woul d go here.

HHEH H A A A R S S R R
Dat abase #2 - Berkel ey DB
dat abase bdb

Database paraneters and directives woul d go here.
And so on .

The global section starts at the beginning of the file and continues until the first dat abase directive. We will revisit
the few parameters listed here in a few moments.

The start of a database backend section is marked by the dat abase parameter; the section continues until the
beginning of the next database section or the end of the file. It is possible to define multiple databases that are
served by a single installation of slapd. Each one is logically independent, and the associated database files will be
stored separately.

For security reasons, the slapd.conf file should be readable and writable only by the user
who runs the slapd daemon, which is normally the superuser. A working server's
slapd.conf often contains sensitive information that should be restricted from unauthorized

viewing.

3.5.1 Schema Files

The first step in configuring your LDAP server is to decide which schema the directory should support. It's not easy
to answer this question in a few lines. We'll start our example with the bare minimum.

OpenLDAP 2 includes several popular schema files to be used at the administrator's discretion. The needs of the
applications that will use the directory determine which schema you use. All the attri but eType and
obj ect Cl ass definitions required for a bare-bones server are included in the file core.schema. Some of these
attri but eTypes and obj ect Cl asses are:

e Attributes for storing the timestamp of the last update on an entry

e Attributes for representing name, locations, etc.

e Objects to represent an organization or person

e Objects to represent DNS domain names

e Andsoon. ..

By default, this file is located in the directory /usr/local/etc/openldap/schema/ after installation. In the
configuration file, the i ncl ude parameter specifies schemas to be included by the server. Here's how the file looks

for a minimal configuration:
/usr/ 1 ocal / et c/openl dap/ sl apd. conf
G obal section

| ncl ude the mni mum schema requi red.
i ncl ude /usr/l ocal / etc/ openl dap/ schena/ cor e. schema

BHH B H BB HH R R R R R R H R R R R
Database sections omtted

"_-‘ I won't discuss the details of what is contained in core.schema yet. I'll delay this discussion
F I until adequate time can be spent on the syntax of the file. If you would like a head start,
L
e #: reading RFC 2552 will provide the necessary knowledge for understanding the majority of

OpenLDAP's schema files.

There are several schema files included with a default OpenLDAP 2.1 installation:
corba.schema

A schema for storing Corba objects in an LDAP directory, as described in RFC 2714.
core.schema

OpenLDAP's required core schema. This schema defines basic LDAPv3 attributes and objects described in
RFCs 2251-2256.
cosine.schema

A schema for supporting the COSINE and X.500 directory pilots. Based on RFC 1274.
inetorgperson.schema

The schema that defines the i net Or gPer son object class and its associated attributes defined in RFC 2798.
This object is frequently used to store contact information for people.
java.schema

A schema defined in RFC 2713 for storing a Java serialized object, a Java marshalled object, a remote Java
object, or a JDNI reference in an LDAP directory.
misc.schema

A schema that defines a small group of miscellaneous objects and attributes. Currently, this file contains the
schema necessary to implement LDAP-based mail routing in Sendmail 8.10+.
nis.schema

A schema that defines attributes and objects necessary for using LDAP with the Network Information Service
(NIS) as described in RFC 2307 (see Chapter 6).
openldap.schema

Miscellaneous objects used by the OpenLDAP project. Provided for information purposes only.
The client applications that you want to support may require you to include schema files in addition to
core.schema. Make sure you are aware of dependencies between schema files. Dependencies are normally
described at the beginning of the file. For example, many applications require you to include the i net OrgPerson

object class, which is frequently used to store contact information. The beginning of the inetorgperson.schema file
tells you that you must also include cosine.schema.

3.5.2 Logging

The next group of parameters that you frequently find in the global section of slapd.conf control where slapd logs
information during execution, as well as how much information is actually written to the log. Here's our
configuration file with logging added:

/usr/ 1 ocal / et c/openl dap/ sl apd. conf

d obal section

| ncl ude the mni mum schema requi red.
i ncl ude /usr/l ocal / etc/ openl dap/ schenma/ core. schema

Added |ogging paraneters

| ogl evel 296
pidfile lusr/ 1 ocal /var/ sl apd. pid
argsfile lusr/ 1 ocal /var/sl apd. args

HHH B H B R T R S R R R R
Database sections om tted

The first new parameter is | ogl evel . This directive accepts an integer representing the types of information that
should be recorded in the system logs. It is helpful to think of | ogl evel as a set of bit flags that can be logically
ORed together. The flags are listed in Table 3-2. In this example, the logging level is set to 296, which equals 8 +
32 + 256. Table 3-2 tells us that this value causes slapd to log the following information:

8

Connection management
32

Search filter processing
256

Statistics for connection, operations, and results

Table 3-2. OpenLDAP logging levels

Level Information recorded

-1 All logging information

No Logging information

Trace function calls

Heavy trace debugging

(0]
1
2 Packet-handling debugging information
4
8

Connection management

16 Packets sent and received

32 Search filter processing

64 Configuration file processing

128 |Access control list processing

256 |Statistics for connection, operations, and results

512 |Statistics for results returned to clients

1024 |Communication with shell backends

2048 |Print entry parsing debug information

All debugging information is logged using the LOG_LEVEL4 syslog facility. Therefore, to instruct slapd to write log
entries to a separate log file, add the following line to /etc/syslog.conf and instruct the syslogd daemon to reread
its configuration file by sending it a hangup (kill -HUP) signal:

| ocal 4. debug /var /1 og/ sl apd. | og

The syntax of syslog.conf on your system may be slightly different, so you should consult the syslog.conf manpage
for details.

Somesyslogd daemons require that the specified logging file exists before they write
information to the log. If you think you have set up syslog correctly, but no data is being
collected and your file doesn't exist, try creating the logging file with the touch command.

The remaining two parameters introduced in this section can be summed up in a sentence or two:
pidfilefil ename

This parameter specifies the absolute location of a file that will contain the process ID of the currently
running master slapd process.
argsfilefil enane

This parameter specifies the absolute path to a file containing the command-line parameters used by the
currently running master slapd. This parameter is processed only if slapd is started without the debug
command-line argument.

3.5.3 SASL Options

When | first introduced the topic of installing the Cyrus SASL libraries, | said that SASL is not needed if only simple
binds will be used to access the directory. However, it's often useful to allow a combination of simple binds and
SASL mechanisms for user connections. For example, we might want to allow most users (who are only allowed to
look up data) to authenticate via a simple bind, while requiring administrators (who are allowed to change data) to
authenticate via SASL. So let's see how to configure the directory server to require the use of SASL for certain
administrative accounts, while still allowing simple binds (possibly over TLS) for most clients.

slapd.conf has three SASL-related global options. These are:

sasl - host host nanme
sasl -real nstring
sasl - secpropsproperties

sasl - host is the fully qualified domain name of the host used for SASL authentication. For local authentication

mechanisms such as DIGEST-MDS5, this will be the host and domain name of the slapd server. sasl - r eal mis the
SASL domain used for authentication. If you are unsure of this value, use sasldblistusers to dump the /etc/sasldb
database and obtain the realm name to use.

The third parameter, sasl - secprops, allows you to define various conditions that affect SASL security properties.
The possible values for this parameter are given in Table 3-3. Note that it is legal to use multiple values in
combination. The default security properties are noanonynous and nopl ai n.

Table 3-3. sasl-secprops parameter values and descriptions

Flag Description
None Clears the default security properties (nopl ai n,noanonynous).
nopl ain Disab!es mechanisms vulnerable to passive attacks, such as viewing network packets to
examine passwords.
noactive Disables mechanisms vulnerable to active attacks.
nodi ct Disables mechanisms that are vulnerable to dictionary-based password attacks.
noanonynous Disables mechanisms that support anonymous login.

f orwardsec

Requires forward secrecy between sessions.

passcred

Requires mechanisms that pass client credentials.

m nssf=fact or

Defines the minimum security strength enforced. Possible values include: 0 (no protection), 1
(integrity protection only), 56 (allow DES encryption), 112 (allow 3DES or other string
encryption methods), and 128 (allow RC4, Blowfish, or other encryption algorithms of this
class).

maxssf=f act or

Defines the maximum security strength setting. The possible values are identical to those of
m nssf.

maxbufsi ze=si ze

Defines the maximum size of the security layer receive buffer. A value of 0 disables the
security layer. The default value is the maximum of INT_MAX (i.e., 65536).

To fully understand the sasl - secprops parameter, you must also understand the effects of the various cyrus-sasl
plug-ins.Table 3-4 summarizes the available mechanisms and property flags.

Table 3-4. SASL authentication mechanism security properties

SASL Security property maxssf
mechanism flags
ANONYMOUS NCPLAI'N 0
NCPLAI N
CRAM-MD5 0
NCQANONYMOUS
DIGEST-MDS5 NCPLAIN 128 if compiled with RC4; 112 if compiled with DES; O if compiled with
B NOANONYMOLS neither RC4 nor DES
NCPLAI'N
GSSAPI NQACTI VE 56
NQANONYMOUS
NCPLAI'N
KERBEROS V4 |NOACTI VE 56
NQANONYMOUS

LOGIN NQANONYMOUS 0
PLAIN NQANONYMOUS 0
SCRAM-MD5 NONE 0
SRP NCPLAI' N 0

Consider if you had added the following line to the global section of your current slapd.conf:

No PLAIN or ANONYMDUS nechani snms; use DES encrpytion
sasl - secprops nopl ai n, noanonynous, m nssf=56

Comparing the value of sasl - secprops with the mechanisms listed in Table 3-4 shows that your server will allow
only the following mechanisms for authentication:

DIGEST-MD5
GSSAPI
KERBEROS_4

This configuration assumes that all of these SASL plug-ins have been installed as well. Also remember that
configuring these SASL parameters does not require that an SASL mechanism must always be used for
authentication.

3.5.4 SSL/TLS Options

Like the SASL parameters, slapd.conf offers several options for configuring settings related to SSL and TLS. These
parameters include:

TLSCi pher Sui t eci pher-suite-specification
TLSCertificateFilefil ename
TLSCerti ficat eKeyFil efil ename

TheTLSCi pher Sui t e parameter allows you to specify which ciphers the server will accept. It also specifies a
preference order for the ciphers. The value for TLSCi pher Sui t e should be a colon-separated list of cipher suites.

The explanation of available cipher suites is lengthy, so | won't reproduce it; refer to the ciphers(1) manpage
distributed with OpenSSL. Here are a few common options; the order of preference is from left to right:

RCA: DES: EXPORT40
HI GH: MEDI UM
3DES: SHAL: +SSL2

The next two parameters, TLSCertificat eFil e and TLSCerti ficat eKeyFi | e, inform slapd of the location of
the server's certificate and the associated private key. This will be used to implement both LDAP over SSL (LDAPS)
and the StartTLS extended operation. However, you have yet to create a certificate for your server.

3.5.4.1 Generating the server's certificate

TheCA.pl Perl script, installed in /usr/local/misc/ as part of the OpenSSL installation, provides a nice wrapper
around the openssl tool and its command-line arguments. To use this script, openssl must be located in the current
search path.

Crypto 101

In my own work configuring OpenSSL and the services that use these libraries, | have found the
documentation a little sparse. If you are interested in learning more about SSL, cryptography, or
digital certificates, the following sources are a good place to start:

e "An Introduction to SSL,"
http://developer.netscape.com/docs/manuals/security/sslin/content. htm.

e T. Dierks, et al., "The TLS Protocol Version 1.0", RFC2246, January 1999.

e C. Kaufman, et al., Network Security: PRIVATE Communication in a PUBLIC World (Prentice
Hall).

e Peter Gutannn's "Godzilla Crypto Tutorials Slides," http://www.cs.auckland.ac.nz/—pqut001/.

e Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C (John Wiley
& Sons).

e John Viéga, et al., Network Security with OpenSSL (O'Reilly).

TheCA .pl script greatly simplifies the creation of server certificates. In order to create a new certificate, use the -
newcert command-line option and answer the questions as prompted. Here's how to use CA.pl to create a new
certificate:

$ /usr/local/msc/CA pl -newcert

Ent er PEM pass phrase:test

Verifying password - Enter PEM pass phrase:test

You are about to be asked to enter information that will be incorporated into your
certificate request.

What you are about to enter is what is called a Distinguished Name or a DN
There are quite a few fields but you can | eave sone bl ank

For some fields there will be a default val ue,

If you enter '.', the field will be |left blank.

Country Name (2 letter code) [GB]:US

State or Province Name (full nane) [Berkshire]:Alabam

Locality Name (eg, city) [Newbury]: Sonmewhere

Organi zation Nane (eg, conpany) [My Conpany Ltd]:PlaineJoe Dot Org

Organi zational Unit Nanme (eg, section) []:IT

Common Nanme (eg, your name or your server's hostnane) []:pogo.plainjoe.org
Emai | Address []:jerry@l ainjoe.org

Certificate (and private key) is in neweq.pem

This command creates a file named newreq.pem that contains a password-protected private key and a self-signed
certificate. Here are the contents of newreq.pem:

----- BEG N RSA PR VATE KEY-----
Proc- Type: 4, ENCRYPTED
DEK- | nf o: DES- EDE3- CBC, D8851189E7EA85CE

| N"ZpOf zghNhNaBMR@Bt Yxj PbWiHw+3 XxVAowOL FJy FQROhuRDgr Ui all W' Ti kb4d
rvj bv8T1+SNOvRGABpz 3nAERNS6UENZPu201b9X413uXaF80TYYl d7CQJal Gbnj qr
G oHaYwbnvAl Ryhg3zhgCnBgscz0l 5DCXGTwWOT1TeqaTf DBBpRE4AES+FOdI Kj Rf
yXuXmir TgOC9I TokzRj 4Xt uOnJf Q6LKouooel 43FHqFBFV4Iws1 | KOuAg/ tki nez
VgVesaV707PLqdl YNAVXx26z/ nPwbbAT2JY4f genBzj BJPDNGTr / Qnc YgbMcGHHB/
7z7mBnON 7nCpgFSW1Kgvt DI O qZnGSpTLbZ/ pY+JUT3i Ps RAaL5XHDZDMsp FOI
R70ePd3Z5sUcgl1TJI nuPYej yTi 10M hoKr Nnj M+4bTY8St 14z AaMW15G 3GEJuel
j eJkBZba8Up @539y Pf uPl NueJFG+Q pDUNHW/HSW CGhai KVZx PTZWCZr gHx7 UbYw

http://developer.netscape.com/docs/manuals/security/sslin/content.htm
http://www.cs.auckland.ac.nz/~pgut001/

f QVORG6Adubv YNi CDYXUNN3 Yt vD020kbi GV 530Xl Yv5hOydqdWRhALhf RBSKAG
f nt 10\Qyj T 0K2nj +nMNQU5Sk HVF A+Qehw7mvWAS R/ 21 dX+/ QTA8n10R 7U4zy SUL
i aAycSQ / yFHeHBhj OgFzKhvJU9UX1A/ | Dzn¥Z/ vPGs SCvyv3GDLI zKlw bUgxKE
3DzAlQuuUd 36HYTEgeF@DgHPx zj ht gPy GgTGAXmB3dOndMy s 4VxeVB3Y+3vy 3l

B6f aH3/ UKv1S6Fhj 6xzxCDj | LLt 2zVV0obi 3F67QBXEvVDO8FCYt LI ww= =

----- END RSA PRI VATE KEY-- - - -

----- BEG N CERTI FI CATE- - - - -

M | Ds DCCAxnmgAw BAgl BADANBgk ghki Gw0BAQQFADCBN TEL MAk GA1 UEBh MCVIVK
EDAOBgNVBAg TBOFs YW hbWVEX B AQBgNVBAC TCVNvbW/3aGW ZTEaMBgGAL UEChIVR
UG<haVBl Sn8l | ERvdCBPcnt x Cz AJBgNVBAs TAKI UVRWWGg YDVQDEX NN YXJIpb24u
c&haWsgb2Uub3JnMsEWHNYJKoZI hv c NAQk BFhJgZXJye UBno GFpbnpv ZS5v e ntw
Hhc NVDI x MTE2M | 0 Mz ASWhc NVDVK MTE2M | OMz ASW CBn TEL MAKGAL UEBh MCVVIVK
EDACBgNVBAg TBOFs YW hbVEEx | AQBgNVBAC TCVNvbW/3aGVy ZTEaMBgGAL1 UEChMR
UGchaWsl Sn®l | ERvdCBPcnt x Cz AJ BgNVBAS TAK I UVRWWGg YDVQCDEX N YXJIpb24u
c&xhaWsqb2Uub3JnMsEWHNYJ Ko ZI hv c NAQk BFhJ gz XJye UBnb GFpbnpv ZS5v cnew
gZ8wDQYJKoZl hve NAQEBBQADgYOAM GJA0GBALVOpZLKCOwWgi oakJt gKr 0+DScZ9h
C/ nLcOxw9t 6RUH WSD9aGC9r MaMGr x G5Yql +dEuhbGWnVo371 sM HCroJ sXwY/ 2
r/ RQT5dk1j yCAqt +2r 4nE3EC/ bCXOGRj) TOgn30bB570XZ219gBCf Ywl XOt Yncl XOP
0f UWFVRGHT r BLEQDAgMBAAG gf Owgf owHQYDVROMBBYEFPVRTbS) VJ4v4pChONOk
0Jk8YZI GV HKBgNVHSMEgc | wgb+AFPVRTb S VJ4v4pCb0ONOkoJk8YZI GoYG pl Gy
M Gd MQ WwCQYDVQQGEWJI VUz EQVA4 GAL UECBMHOWK Yt YTESVBAGAL UEBX M U29t

ZXdoZXJ| MRowGAYDVQQKEX FQbGFpbmvKb 2 UgRGI0I E9yZz EL MAKGAL UECX MCSVQX
HDAaBgNVBAMTE2dhcm vbi 5wbhGFpbnpvZS5ventxl TAf Bgkghki GOWOBCQEVEND!

cnJ50QHBs YW uan®! LnmBy Z41 BADANMBg NVHRVEBTADAQH/ MAOGCSqGSI b3 DQEBBAUA
AAGBAI Mty S | TRXb/ d1gcOf XUQSKAU3I XqPgS8j Y3UL12BI | / kCZFcZxj ksg6xBi b
91Y/ bonSEi sJGr74zn/ 0t s3sj sr 3QKZp5x Fc YCy K3l Yj agnFe AGh+eUp54vLpmEZX
e4QaeTkg/ 8VvhS3vFvWoxf 04Z1Zu/ whp9WWVRRW VARI9Ppps

----- END CERTI FI CATE-- - - -

Notice that the CA.pl script places a private key in the same file as the public certificate. You must remove the
password for the private key unless you always want to start the OpenLDAP server manually. It is extremely
important to protect this key carefully. Public key cryptography is no good if the private key is readily available to
anyone.

Because this private key is password protected, it will require some modification before integrating it into the
server's setup. The following command removes the password from the private key and places the modified
version of the key in a separate file:

$ openssl rsa -in neweq.pem-out newkey.pem
read RSA key

Ent er PEM pass phrase:t est

writing RSA key

Thenewkey.pem file can be renamed to a filename of your choosing. Something like slapd-key.pem would be
appropriate. Make sure that the new file is safely secured using the appropriate filesystem permissions (i.e., I W - -

-

Finally, using your favorite text editor, remove the original private key from newreg.pem. I'll rename the certificate
file to slapd-cert.pem for the remaining examples in this chapter. At this point, we have the following files:

slapd-key.pem

LDAP server's private key
slapd-cert.pem

LDAP server's public certificate
Here are the TLS configuration parameters in the context of slapd.conf:
[usr/ 1 ocal / et c/openl dap/ sl apd. conf

d obal section

| ncl ude the mni mum schena requi red.

i ncl ude /usr/l ocal / etc/ openl dap/ schenma/ cor e. schema

Added |ogging paraneters

| ogl evel 296
pidfile lusr/ 1 ocal /var/ sl apd. pid
argsfile lusr/ 1 ocal /var/ sl apd. args

TLS options for slapd

TLSCi pher Sui te H GH

TLSCertificateFile /etc/local /sl apd-cert. pem
TLSCertificateKeyFile /etc/local /sl apd-key. pem

BHH B H B H R HH R R R R R R R R
Database sections onmtted

3.5.5 More Security-Related Parameters

There are also five other security-related global options to be covered prior to continuing on to the database
section. These are:

security
require

al |l ow

di sal | ow
passwor d- hash

Thesecurity parameter allows us to specify general security strength factors. Table 3-5 lists the options and
values for the security parameter. All of these options take an integer value specifying the strength factor; the
integer must be one of the values used for the mi nssf and maxssf parameters described in Table 3-3.

Table 3-5. Possible values for the slapd.conf security parameter

Value Description

sasl Defines the SASL security strength factor.

ssf Defines the overall security strength factor.

tls Defines the security strength factor to the SSL/TLS security layer.
Defines the security strength provided by the underlying transport layer. Eventually, this

transport option will be used to choose between multiple secure transport layer protocols, such as TLS
and IPSEC.

updat e_sasl

updat e_ssf

Define the security strength of the various layers when performing update operations on the

update tls directory.

updat e_transport

For example, we can require very strong authentication and transport layer security when performing updates by
adding the following line to the global section of slapd.conf:

Require strong authentication and transport |ayer security for update operations.
NOTE: This is just an exanple and will not be added to our final slapd.conf.
security updat e_sasl =128, update_t | s=128

To take full advantage of the secur ity parameter, you must disable simple binds and use only SASL mechanisms
for authentication. See the di sal | ow parameter in this section for details of how this can be done.

Ther equi re parameter differs from the secur ity parameter by allowing an administrator to define general

conditions that must be met to provide access to the directory. This setting may be done globally or on a per-
database basis. The r equi r e parameter accepts a comma-separated list of the strings described in Table 3-6.

Table 3-6. Values for the require parameter

Value Description
none Clears all requirements.
aut hc Requires client authentication prior to directory access (i.e., N0 anonymous access).
bi nd Requires the client to issue a bind request, possibly an anonymous bind, prior to directory operations.

LDAPv 3 Requires the client to use Version 3 of the LDAP protocol for directory access. By default, OpenLDAP
supports both LDAPv2 and v3 clients.

SASL Require the client to use strong (SASL) authentication in order to be granted access to the directory.
strong Currently, these two options are identical.

The effect of some of the r equi r e settings can be obtained by other means as well. For example, if anonymous
users should have no access to directory information, OpenLDAP provides access control lists within a database
that can restrict access in a much more flexible way.

Theal | ow (and complementary di sal | ow) parameters provide another means of enabling and disabling certain
features. Currently, the al | ow parameter supports only two options:

none

This is the default setting.
tls_2 anon

Allows TLS to force the current session to anonymous status.
Thedi sal | ow parameter, however, offers many more options. These include:
bind_v2

Disables LDAPv2 bind requests
bi nd_anon

Disables anonymous binds
bind_anon_cred

Disables anonymous credentials when the DN is empty
bind_anon_dn

Disables anonymous binds when the DN is nonempty
bind_si npl e

Disables simple binds
bi nd_kr bv4

Disables Kerberos 4 bind requests
tls_aut hc

Disables StartTLS if the client is authenticated

Finally, the passwor d- hash parameter defines the default password encryption scheme used to store values in
theuser Passwor d attribute. This setting can be overridden on an individual attribute basis by prefixing the
password with the appropriate directive. The default encryption scheme is { SSHA} . Other possibilities include:

{ SHA}

{ SvD5}
{ MD5}

{ CRYPT}

{ OLEARTEXT}

The security parameters and examples presented here are enough for our needs. Refer to the openssl(1) manpage
for more information on OpenSSL tools and configuration.

After covering these final parameters, you can complete the global section of your slapd.conf:

/usr/ | ocal / et c/openl dap/ sl apd. conf
d obal section

I ncl ude the mni num schema requi red.
i ncl ude /usr/l ocal / etc/ openl dap/ schenma/ cor e. schema

Added |ogging paraneters

| ogl evel 296
pidfile lusr/ | ocal /var/ sl apd. pid
argsfile lusr/ 1 ocal /var/ sl apd. args

TLS options for slapd

TLSCi pher Sui te H GH

TLSCertificateFile /etc/local /sl apd-cert. pem
TLSCertificateKeyFile /etc/local /sl apd-key. pem

M sc security settings
passwor d- hash { SSHA}

HHH B H B R R R R R A R R R
Database sections om tted

3.5.6 Serving Up Data

Following the global section of slapd.conf will be one or more database sections, each defining a directory partition.
A database section begins with the dat abase directive and continues until the next occurrence of the dat abase

directive or the end of the file. This parameter has several possible values:

bdb

This backend has been specifically written to take advantage of the Berkley DB 4 database manager. This
backend makes extensive use of indexing and caching to speed up performance; it is the recommended
backend used on an OpenLDAP server.

| dom

Anl dbmdatabase is implemented via either the GNU Database Manager or the Sleepycat Berkeley DB
software package. This backend is the older implementation of the bdb backend. The details of this backend
are described in the slapd-ldbm(5) manpage.

passwd

Thepasswd backend is a quick and dirty means of providing a directory interface to the system passwd(5)
file. It has only one configuration parameter: the file directive, which defines the location of the password
file (if different from /etc/passwd) used to respond to directory queries. The details of this backend are
described in the slapd-passwd(5) manpage.

shel |

Theshel | backend directive allows the use of alternative (and external) databases. This directive lets you
specify external programs that are called for each of the LDAPv3 core operations. The details of this backend
are described in the slapd-shell(5) manpage.

The first step in writing a database section is defining the type of backend. The examples in the remainder of this
book almost exclusively use the bdb database value.

Begi n a new dat abase section.
dat abase bdb

The next item is to define the directory partition's naming context. The naming context allows slapd to serve
multiple, potentially disconnected partitions from a single server. Each partition has a unique naming context that
identifies the root entry in the tree. The following example defines the naming context of the database to
correspond with the local domain name, a practice recommended by RFC 2247 ("Using Domains in LDAP/X.500
Distinguished Names"):

Define the begi nning of exanpl e dat abase.
dat abase bdb

Define the root suffix you serve.
suf fix "dc=pl ai nj oe, dc=or g"

Each LDAP directory can have a root DN (rootdn), which is similar to the superuser account on Unix systems. When
authenticated, this DN is authorized to do whatever the user desires; access control restrictions do not apply. For
this reason, some administrators prefer not to configure a root DN at all, or at least remove it once the directory
has been sufficiently populated to hand over control to existing user accounts.

The naming of the root DN is arbitrary, although the cn values of "admin" and "Manager" have become common
choices. The root DN also requires a corresponding root password (r oot pw), which can be stored in clear text or
encrypted form using one of the prefixes accepted by the passwor d- hash parameter. OpenLDAP 2 provides the
slappasswd(8c) utility for generating { CRYPT} ,{ MD5} ,{ SMD5} ,{ SSHA}, and { SHA} passwords. Do not place the
root password in plain text regardless of what the permissions on slapd.conf are. Even if the password is
encrypted, it is extremely important not to allow unauthorized users to view slapd.conf.

Define a root DN for superuser privileges.
r oot dn "cn=Manager, dc=pl ai nj oe, dc=or g"

Define the password used with rootdn. This is a salted secure hash of the phrase
"secret."
r oot pw { SSHA} 2aks| ai c Avwc+DhCr XUFI hgWsbBJPLxy

You aren't required to define a root password. If no r oot pwdirective is present, the r oot dn is authenticated using
the server's default authentication method (e.g., SASL). OpenLDAP 2.1 uses a DN representation of an SASL
identify. The general syntax is:

ui d=name, [cn=real m ,cn=SASL Mechani sm cn=aut h

Thecn=r eal mportion on the DN is omitted if the mechanism does not support the concept of realms or if the one
specified is the default realm for the server. If your OpenLDAP server existed within the PLAINJOE.ORG realm and
you chose to use a Kerberos 5 principal named Idapadmin@PLAINJOE.ORG as the r oot dn, it would appear as:

root dn "uid=Il dapadm n, cn=gssapi , cn=aut h"
The next two parameters should be left to their default values:
| ast mod

This parameter determines whether slapd will maintain the operational attributes nodi f i er sNane,
nodi f yTi mest anp,creat or sNane, and creat eTi mest anp for all entries defined in core.schema. The
default behavior is to maintain the information for all entries. The option accepts a value of of f or on.
Disabling this parameter means that client-side caching of information is not possible because no marker
exists to test whether an entry has been updated.

readonl y

Ther eadonl y parameter allows a server to disable all update access, including update access by the
r oot dn. Directory data is writable by default, assuming that there are no access control lists in place. Under

some circumstances, such as backing up the data, you may want to prevent the directory from accepting
modifications. Like the | ast nod parameter, the r eadonl y options also accept the values of f or on.

3.5.6.1 bdb backend-specific parameters

The database parameters discussed up to this point are applicable to OpenLDAP's various database backends in
general. This section examines several parameters that are used only by the bdb database.

Thedir ect ory and node parameters define the physical location and filesystem permissions of the created
database files. These parameters are necessary because, when using an | dombackend, slapd manages the data
store itself. In the following configuration file, the di r ect or y and node parameters tell slapd and the other LDAP
tools how to locate and store the database files for this partition. The files are stored in the directory
/var/ldap/plainjoe.org/ and created with read/write permission (0600) for the owner only (the account under which
theslapd daemon runs).

Define the begi nning of exanpl e dat abase.
dat abase bdb

Define the root suffix you serve.
suf fix "dc=pl ai nj oe, dc=or g"

Define a root DN for superuser privileges.
r oot dn "cn=Manager, dc=pl ai nj oe, dc=or g"

Define the password used with rootdn. This is the Base64-encoded MX% hash of
"secret."
r oot pw { SSHA} 2aks| ai c Avwc+DhCr XUFI hgWsbBJPLXxy

Directory containing the dat abase files
directory /var /| dap/ pl ai njoe. org

Files should be created rw for the owner **only**.
node 0600

It's a good idea to maintain tight security on the physical database files even if the

directory server is a closed box (i.e., no users can log into the server and run a shell). It is
easier to manage the server when the only way to access the backend storage is via slapd
itself.

Thei ndex parameter specifies the attributes on which slapd should maintain indexes. These indexes are used to
optimize searches, similar to the indexes used by a relational database management system. slapd supports four
types of indexes. However, not all attributes support all four index types. Each index type corresponds to one of
the matching rules defined in the directory schema.

approx (approximate)

Indexes the information for an approximate, or phonetic, match of an attribute’s value.
eq (equality)

Indexes the information necessary to perform an exact match of an attribute value. The match may be
case-sensitive or whitespace-sensitive, depending on the matching rules defined in the attribute's syntax.
pres (presence)

Indexes the information necessary to determine if an attribute has any value at all. If an attribute does not
possess a value, then the attribute is not present in the directory entry.
sub (substring)

Indexes the information necessary to perform a simple substring match on attribute values.

There can be multiple index definitions for the same database—and even multiple attributes or index types—on the
same line. Each attribute or index type should be separated by a comma; use whitespace to separate the attribute
list from the list of index types. Here's how to define an equality and presence index on the cn attribute:

Maintain presence and equal ity searches on the cn and uid attributes.
i ndex cn pres, eq

Which indexes should be maintained depends on the client applications that the server will support and the types
of searches that those applications will perform. The best way to determine which indexes to maintain is to include
the search processing debug output (loglevel 32) in the server's log file.

o1} OpenLDAP 2 requires an equality index on the obj ect Cl ass attribute for performance

1 reasons.
wh

Must be mmintai ned for performance reasons
i ndex obj ect Cl ass eq

I cannot stress the use of proper indexes enough. Misconfigured indexes are probably the number one reason
administrators experience performance problems with OpenLDAP servers. Many of the applications and scenarios
presented later in the book focus on functionality and not necessarily performance. This should not be construed as
lessening the importance of properly indexing the attributes used fregently in searches. It simply means that |
assume you have learned your lesson about indexes here and can fill in the blanks later.

While an indexed database offers many performance benefits over flat text files, these benefits can be increased
by caching entries and indexes in memory to prevent disk 1/0 in response to common searches. The cachesi ze

parameter allows you to tune caching according to the needs of the directory.

Thecachesi ze parameter defines the number of entries that should be cached in memory. The default is to cache
1,000 entries. If your total directory size is less than 1,000 entries, there is no need to modify this setting. If,
however, your directory contains 1,000,000 entries, a cache size of 100,000 would not be unusual.

from the number. For example, 100,000 should be entered as 100000.

|! When setting parameters to integer values in slapd.conf, make sure to remove commas

Here is what the database section looks like so far:

Define the begi nning of exanpl e dat abase.
dat abase bdb

Define the root suffix you serve.
suf fix "dc=pl ai nj oe, dc=or g"

Define a root DN for superuser privileges. This is the Base64-encoded MD5 hash of
"secret."
root dn "cn=Manager , dc=pl ai nj oe, dc=or g"

Define the password used w th rootadn.
r oot pw {SSHA} 2aks| ai c Avwc+DhCr XUFlI hgWsbBJPLXxy

Directory containing the database files
directory /var /| dap/ pl ai njoe. org

Files should be created rw for the owner **only**.
node 0600

| ndexes to nmintain
i ndex obj ect Cl ass eq
i ndex cn pres, eq

db tuning parameters; cache 2,000 entries in menory
cachesi ze 2000

[TeamLiB] [Crreviovs]

[Team LB] [<ereviovs)

3.6 Access Control Lists (ACLS)

The Directory ACLs provided by OpenLDAP are simple in their syntax, yet very flexible and powerful in their
implementation. The basic idea is to define Who has Access to What? The most frequent forms of "Who" include:

*

Matches any connected user, including anonymous connection
sel f

The DN of the currently connected user, assuming he has been successfully authenticated by a previous bind
request
anonynous

Nonauthenticated user connections
users

Authenticated user connections
Regular expression

Matches a DN or an SASL identity

Remember that the login name used to specify a user for authentication takes the form of a DN (e.g.,
dn="cn=geral d carter,ou=peopl e, dc=pl ai nj oe, dc=or g") or an SASL identify (e.g.,

dn="uid=j erry, cn=gssapi, cn=aut h"). The sel f value is used as a shortcut for the DN of the authenticated
user of the current session. The examples later in this section will help clarify this concept.

The notion of an access level is a new concept. Table 3-7 summarizes the various access privileges. Higher levels

possess all of the capabilities of the lower levels. For example, conpar e access implies aut h access, and wri t e
access implies r ead,sear ch,conpare, and aut h.

Table 3-7. Summary of access levels from most (top) to least (bottom)

Access Permission granted
level
wite Access to update attribute values (e.g., Change this t el ephoneNunber to 555-2345).
r ead Access to read search results (e.g., Show me all the entries with a t el ephoneNunber of 555*).

search Access to apply search filters (e.g., Are there any entries with at el ephoneNunber of 555*).

conpare |Access to compare attributes (e.g., Is your t el ephoneNunber 555-12347).

Access to bind (authenticate). This requires that the client send a username in the form of a DN and
some type of credentials to prove his or her identity.

aut h

none No access.

The simplest way to control access is to define a default level of authorization. A global slapd.conf parameter
defines the default access given to a user in the absence of a more explicit rule. For example, adding the following
lines to the global section of slapd.conf gives all users search access unless an explicit ACL says otherwise:

G ve users search access when no ot her ACL applies.
def aul t access sear ch

Finally, the "What" defines the entry and attributes to which the ACL should apply. It is composed of three basic
parts, all of which are optional.

e A regular expression defining the DN of the proposed target of the ACL. The actual syntax is

dn.t argetstyl e=regex, in which t ar get st yl e is one of base,subt r ee,one, or chi | dren, and r egex is

a regular expression representing a DN. The t ar get st yl e, which defaults to subt r ee, is used to broaden or
narrow the scope of the ACL. If, for example, the t ar get st yl e is set to one, the ACL applies only to
children immediately below the defined DN. Very rarely does this setting need be changed from its default.
Ther egex follows normal regular expression rules, with the addition that the DN must be in normalized

form. The most common error is to add extra whitespace between components of the DN—for example, you
can't add a space after the comma in dc=pl ai nj oe, dc=org.

e An LDAP search filter that conforms to RFC 2254. (More on LDAP searches will be covered in the next
chapter.) The syntax for specifying a filteris fil t er=l dapFil ter.

e A comma-separated list of attribute names taking the form attrs=attri but eLi st . If this item is not
present, the ACL applies to all attributes held by the entry that matches the DN regular expression pattern.

If none of these components are present, a single asterisk (*) is used as a placeholder (for "What") to include
everything.

Now that we've looked at the parts of an ACL, let's see how to put an ACL together. It is easiest to understand the
syntax of an ACL by examining some practical uses. The following ACL grants read access to everyone:

Sinple ACL granting read access to the world
access to *
by * read

The space at the beginning of the second line indicates that this is a continuation of the previous line. This control
list could have been written on a single line, but the multiline style is more readable for complex ACLs.

This next example restricts access to the user Passwor d attribute; any user can access the attribute, but can
access it only for authentication purposes. Users can't read or write this attribute.

Restrict userPassword to be used for authentication only.
access to attrs=user Password
by * auth

If a user should be allowed to modify her own password in the directory, the ACL would need to be rewritten as
follows:

Restrict userPassword to be used for authentication only, but allow users to nodify
their own passwords.
access to attrs=user Password

by self wite

by * auth

Once authenticated, a user can write her own password. Anyone is allowed to use passwords for authentication
purposes.

ACLs are evaluated on a "first match wins" basis. An ACL listed first takes precedence over ACLs mentioned later.
This means that more restrictive ACLs should be listed prior to more general ones. Consider what behavior would
result from the following two ACLs. What sort of access would be granted to the user Passwor d attribute?

Sinple ACL granting read access to the world
access to *
by * read

Restrict userPassword to be used for authentication only, but allow users to nodify
their own passwords.
access to attrs=userPassword

by self wite

by * auth

The previous ACLs grant all users (anonymous and authenticated) read access to user Passwor d. This clearly isn't
a policy you would want. To achieve the desired effect of restricting read privileges to this attribute, the ACLs
should be ordered as follows:

Restrict userPassword to be used for authentication only, but allow users to nodify
their own passwords
access to attrs=user Password

by self wite

by * auth

Sinmple ACL granting read access to the world
access to *
by * read

For the next example, assume that the following conditions are met:

e Administrative user accounts are located beneath the DN ou=adm ns, ou=eng, dc=pl ai nj oe, dc=org.
e Normal user accounts are located beneath ou=user s, ou=eng, dc=pl ai nj oe, dc=or g.
e Normal users should not be able to view passwords of other users.
e A user should be able to modify his password.
e Administrative users should be able to modify any user's password.
We can model these rules with the following ACL:

Set control on the userPassword attri bute.
access to dn=".*, ou=eng, dc=pl ai nj oe, dc=or g"
attrs=user Password
by self wite
by * auth
by dn=".*, ou=adm ns, ou=eng, dc=pl ai nj oe, dc=org" write

ACLs can very often be written in more than one equivalent form. The following access rule is functionally identical
to the one just presented:

Set control on the userPassword attri bute.
access to dn. chilren="ou=eng, dc=pl ai nj oe, dc=or g"
attrs=user Password
by self wite
by * auth
by dn. chi | dren="ou=adm ns, ou=eng, dc=pl ai nj oe,dc=org" wite

These examples are only a few possibilities of what can be done. We will continue to explore ACLs as a means of
securing our server as we add more information into the directory in later chapters.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

Chapter 4. OpenLDAP: Building a Company White Pages

The previous chapter discussed how to install OpenLDAP and provided an overview of the slapd configuration file,
slapd.conf. However, we have yet to launch the server, let alone add any data to the directory. Using the
slapd.conf from Chapter 3 as a starting point, this chapter shows you how to create a company directory for
storingemployeecontact information, including postal addresses, email addresses, and phone numbers.

[Team LB] [<ereviovs)

[Team LiB]

4.1 A Starting Point

Here is the slapd configuration file developed in Chapter 3. We will change some of the entries in this listing as

things progress.
[usr/ 1 ocal / et c/openl dap/ sl apd. conf
d obal section

| ncl ude the mni mum schena requi red.
i ncl ude /usr/1ocal /etc/openl dap/ schens/ cor e. schena

Added |ogging paraneters

| ogl evel 296
pidfile /usr/1ocal /var/sl apd. pi d
argsfile /usr/l ocal /var/sl apd. ar gs

TLS options for slapd

TLSCi pher Sui te HI GH
TLSCertificateFile /etc/local/slapd-cert.pem
TLSCertificateKeyFile /etc/local /slapd-key. pem

M sc security settings
passwor d- hash { SSHA}

HHE M H A R R R R A R R R
Define the begi nning of exanpl e dat abase.
dat abasebdb

Define the root suffix you serve.
suf fix "dc=pl ai nj oe, dc=org"

Define a root DN for superuser privileges.
r oot dn "cn=Manager, dc=pl ai nj oe, dc=org"

Define the password used with rootdn. This is the base64-encoded MX% hash of

"secret."

r oot pw { SSHA} 2aksl ai cAvwec+DhQ XUFl hgWs bBI PLxy

Directory containing the database files
directory /var /| dap/pl ai nj oe. org

Files should be created rw for the owner **only**.
node 0600

| ndexes to maintain
i ndex objectd ass eq
i ndex cn pres, eq

db tuning parameters; cache 2,000 entries in nmenory
cachesi ze 2000

Sinple ACL granting read access to the world

access to *
by * read

[Team LiB]

[Team LB] [<ereviovs)

4.2 Defining the Schema

The first step in implementing a directory is determining what information to store in the directory. The naming
context of your server has already been defined as:

dc=pl ai nj oe, dc=org
Store contact information for employees in the peopl e organzational unit:
ou=peopl e, dc=pl ai nj oe, dc=or g

There are several ways to identify the data that should be placed in an employee's entry. Information stored in an
existing Human Resources database can provide a good starting point. Of course, you may not want to place all of
this information in your directory. As a general rule, | prefer not to put information in a directory if that data
probably won't be used. If it turns out that the data is actually necessary, you can always add it later. Eliminating
unnecessary data at the start means that there's less to worry about when you start thinking about protecting the
directory against unauthorized access.

An alternative to starting with an existing database is to determine which employee attributes you wish to make
available and define a schema to match that list. The reverse also works: you can select a standard schema and
use the attributes already defined. | prefer this approach because it makes it easy to change from one server
vendor to another. Widely used, standard schemas are more likely to be supported by a wide range of vendors.
Custom, in-house schemas may need to be redesigned to adapt to a new vendor (or even a new version from the
same vendor).

For your directory, the i net OrgPer son schema defined in RFC 2798 is more than adequate. From Section 3.5.1 in
Chapter 3, we know that this object class and associated attributes are defined in OpenLDAP's
inetorgperson.schema file. As shown in Figure 4-1, ani net OrgPerson is a descendant of the

organi zat i onal Person, which was itself derived from the per son object class.

Figure 4-1. Hierarchy of the inetOrgPerson object class

objectllass:person f--ecscacacnnemaananaaaaan
on: | :
jn-."““““- aftriburtes Fatent
iserPasswornd: :
telephanelumber ¥
sephlsn: objectClass: organizationalPersen ===y
description: :
title: facsimileTelephoneNumber: i
#1231 Address: street: '
registered Address: postOfficeBo '
destinationlndicator: pestallade: :
| prefermdbeliveryMethod: postalhddress: 1
Er}f“f:gm"'i telexMumber physicalDelivery DfficeMame '
teletexTarminalldentifier: o :
telephonelurmber: st :
intemaltionalSDNNumber: I Parent
L4
obsgectClass: inetOrgPersen
audio: manager
bisinessCategory: Mobile:
tarlicense: o
departmenthumber. Pager
displayMame: phata:
employeelumber; Teombumber
employeeType: secretary:
gienbame itk
homePhone: userCertificate
homePostalAddress wnigueldentifier
initials perferredlanguage:
jpegPhata: userSMIMECertificate:
laheled R userPRCS 12
mail;

The union of these object classes defines the set of required and optional attributes that are available. This means
that the only required attributes in ani net Or gPer son object are the cn and sn attributes derived from the
per son object class.

"_-‘~ From this point on, diagrams of an object class will not include RFC 2252-style schema
o definitions. If you wish to study the exact syntax of any object class, refer to the schema
L
. # s files included with OpenLDAP or the relevant RFC (or Internet-Draft).

Your directory will use the cn attribute as the RDN for each entry. Remember that the RDN of an entry must be

unique among siblings of a common parent. In larger organizations, two people may have the same first and last
name. In these cases, using a more specific value for the cn, such as including a middle name (or initial), can

alleviate name collisions.

Another way to reduce the number of name collisions is to redesign the directory layout to reduce the total number
of user entries sharing a common parent. In other words, group employees in some type of logical container, such
as a departmental organizational unit. Figure 4-2 illustrates how this design avoids namespace conflicts. In this

directory the "John Arbuckle" in sales is different from the "John Arbuckle" in engineering because the entries
possess different parent nodes.

Figure 4-2. Using organizational unit to avoid collisions of common names (cn)

de=plainjoe,dc=om

au=sales ou=enginesring

cn=lohn Arbuckle r=lohn Arbuckle

For our example, going with a single container of ou=peopl e is fine; furthermore, our employee base is small
enough to use an employee's common name (cn) without fear of conflict. Figure 4-3 shows the directory

namespace developed so far.

Figure 4-3. Directory namespace for company address book

de=plainjoe di=org

ou=peaple

.ernplnyeecnntact.
information
Here is an employee entry that contains the attributes needed for our directory. Notice that the two required
attributes outlined in Figure 4-1,cn and sn, are present in addition to several optional attributes.

LDIF entry for enployee "Gerald W Carter"

dn: cn=Gerald W Carter, ou=peopl e, dc=pl ai nj oe, dc=org
obj ectCl ass: inetOrgPerson

cn: Gerald W Carter

sn: Carter
mai | : jerry@lainjoe.org
mai | : gcarter @alinux.com

| abel edURI: http://ww. plainjoe.org/
roomNunber: 1234 Dudley Hall

depar tment Nunber: Engi neeri ng

t el ephoneNunber: 222-555-2345

pager: 222-555-6789

mobi | e: 222-555-1011

Deep or Wide?

Is it better to maintain a shallow (and wide) tree or a deep (and narrow) directory? The best structure
for your directory depends on two factors.

First, how likely is it for a change to force an entry (in our case, a person) to be moved from one
organizational unit to another? The answer to this question is based on a solid understanding of your
organization and its needs. Deeper directory trees imply that an entry must meet more requirements
in order to be placed in a certain container. For example, rather than placing all employees under the
ou=peopl e, using characteristics such as departments, job description, and geographic location makes
for a more defined grouping. However, if these characteristics are likely to change frequently, you will
only be creating more work for yourself in the long term. It is also good to note that deep directories
require longer DNs to reference entries. This can become an annoyance over time.

Second, does the implementation of your LDAP directory server favor one design over another? For
OpenLDAP, this answer depends on your needs. The determining factor will be the number of updates,
or writes, that will be made to the directory. To update an entry, the slapd server obtains a lock on
the parent entry for the requesting client. Now suppose that you have a very shallow directory tree
with 10,000 entries under a single parent. If many updates occur at the same time, the contention for
the lock on the parent entry will be very high. The end result will be slower updates because processes
will block waiting for the lock.

A deeper tree means that you can often make searches more efficient by giving a more detailed
search base. For more information on designing LDAP namespaces, you may wish to read Howes, et
al.,Understanding and Deploying LDAP Directory Services (MacMillan Technical Press).

[Team Lig] [ersvious]

[Team LB] [<ereviovs)

4.3 Updating slapd.conf

Once the schema has been selected, the next step is to modify slapd.conf to support the selected attribute types
and object classes. In order to support the i net OrgPer son object class, you must include inetorgperson.schema,

core.schema, and cosine.schema in slapd.conf. The comments that begin inetorgperson.schema outline the
dependency on the COSINE schema. Here are the modifications to the global section of slapd.conf:

lusr/1ocal /et c/openl dap/ sl apd. conf
d obal section

| ncl ude the mni mrum schena requi red.
i ncl ude lusr/l ocal / etc/ openl dap/schema/core. schema

Added to support the inetQ gPerson object.
i ncl ude /usr/l ocal / etc/ openl dap/ schema/cosi ne. schema
i ncl ude /usr/l ocal / etc/ openl dap/ schema/i netor gper son. schema

Added |ogging paraneters

The database section is currently in working condition, so only a few changes are needed. To better support
searches for employees, you should modify the set of indexes to include a more complete list of attributes. In
addition to creating an index for the cn attribute, you'll also index the surname (sn) and email address (nai |)
attributes. In addition to the equality (eq) index, you'll add a substring (sub) index to support searches such as "All
employees whose last names begin with C." Finally, you will add an equality index for the depar t ment Nunber
attribute so that users can search for employees within a given department. This index would not be necessary if
the directory were laid out as shown in Figure 4-2 because the same effect could be achieved by beginning the
search at the department ou. Here are the changes to the database section:

| ndexes to maintain

i ndex object d ass eq
i ndex cn,sn, nai l eq, sub
i ndex depar t ment Nurber eq

At this point, it's a good idea to verify that the location specified by the directory parameter exists and has the
proper permissions. In our example, that directory is /var/ldap/plainjoe.org. If this directory does not exist, the
following two commands ensure that the filesystem is ready to store data:

root# nmkdir -p /var/ldap/plainjoe.org
root# chnmod 700 /var/l dap/ pl ai njoe. org

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

4.4 Starting slapd

Once the final tweaks have been added to the configuration file, the next step is to start the slapd daemon by
executing the following command as root:

root# /usr/local/libexec/slapd
Use the ps command to verify that slapd is running. On a Linux system, the output should appear similar to:

$ ps -ef | grep slapd

r oot 8235 1 012:37 72 00: 00: 00 /usr/local/libexec/sl apd
r oot 8241 8235 0 12:37 ? 00: 00: 00 /usr/local /libexec/sl apd
r oot 8242 8241 0 12:37 ? 00: 00: 00 /usr/local/libexec/sl apd

On Linux and IRIX, multiple threads of a process will show up as individual entries in the output from ps. On
Solaris,slapd will be displayed as a single process.

Stopping the OpenLDAP server requires that the daemon have a chance to flush modified directory data to disk.
The best way to do this is to send the parent slapd process an | NT signal, as shown here (the pidfile location was

defined in the server's configuration file):
root# kill -INT 'cat /var/run/slapd.pid

Shutting down slapd by more drastic means, such as kill -9, can result in data corruption and should be avoided at
all costs.

In the absence of any command-line options, slapd's behavior is governed by compile-time defaults or options

defined in the slapd.conf file. At times, it is necessary to override some of these settings via the command line.
Table 4-1 lists the available slapd options.

Table 4-1. Command-line options for the slapd server

Option Description

Specifies the log level to use for logging information. This option causes slapd to log all information
to standard output on the controlling terminal; it can be very helpful for quick server debugging
sessions. The integer value specified should be a combination of the logging levels associated with
thel ogl evel parameter in slapd.conf.

-d integer

-f filename |Uses a configuration file other than the compile-time default (slapd.conf).

Specifies a space-separated list of LDAP URIs that the slapd daemon should serve. The most
-h URI_list |common URIs are | dap:/// (LDAP on port 389; the default), | daps:/// (LDAP over SSL on port
636), and | dapi :/// (LDAP over IPC).

Specifies the local user of the syslog facility. The default value is LOCAL4. Possible values range

I_écsglsfsge_r fromLQOCALO to LOCAL7. This option may not be supported on all systems. Check the syslog(8)
) manpage to verify the existence of the local-user syslog facility.
n name Defines the service name used when logging messages to syslog. This is for convenience only and

defaults to the string sl apd.

-r directory |Specifies a chroot(1) jail directory to be used by slapd.

-s syslog- Defines a syslog level other than the default level to log all syslog messages. Refer to the
level syslog.conf(5) manpage for available levels on your system.

-u username

- Specify the effective user or group ID for slapd.

groupname

Of course, starting slapd from the command line is something you do only while testing. In practice, it would be

started by one of the system's boot time initialization scripts—either rc.local for BSD systems, or one of the
/etc/rc.d/rc?.d/ (or /etc/init.d/) scripts for System V hosts. You should refer to the init(8) manpage for a brief
description of run levels and which levels are used (and for what functions) on your system. On most Linux
systems, the slapd daemon should be launched at run levels 3 and 5. Run level 5 is basically the same as run level
3 with the addition of X11.

[TeamLiB] [Crreviovs]

[Team LB] [<ereviovs)

4.5 Adding the Initial Directory Entries

A directory without data isn't of much use. There are two ways to add information to your directory; which method
to use depends on the directory's state. First, slapadd and the other slap* commands were presented in Chapter 3
as database maintenance tools. They allow an administrator to import entries directly into the database files and
export the entire directory as an LDIF file. They work directly with the database, and don't interact with slapd at
all. Second, the OpenLDAP distribution includes a number of tools, such as ldapmodify, that can update a live
directory using the LDAPv3 network operations. These tools access the directory through the server.

What are the advantages and disadvantages of these approaches? The offline tools can be much faster;
furthermore, there are circumstances when you can't start the server without first adding data (for example, when
restoring the directory's contents from a backup). The disadvantage of the offline tools, of course, is that they
must be run locally on the server.

In contrast to the offline tools, the LDAP client utilities are more flexible and allow a directory administrator greater
control by forcing user authentication and by using access control lists on directory entries. A good rule of thumb is
that the slap™ tools are used for getting your LDAP server online, and the Idap* tools are for day-to-day
administration of the directory.

OpenLDAP 2.1 removed the restriction that slapd must not be running before any of the

slap* tools can be used. However, OpenLDAP 2.0 caches data in memory, so using the
slap* tools while the directory is running can present an inconsistent view of the directory
at best, and corrupt data at worst.

Thetools for offline manipulation of directory information are slapadd,slapcat,slapindex, and slappasswd (covered
inChapter_3). The slapadd tool determines which files and indexes to update based on the slapd.conf file. Because
it is possible for a given configuration file to define more than one database partition, slapadd provides options for
specifying a database partition by either the directory suffix (-b suffix) or the numbered occurrence (-n integer) in
slapd.conf. Referring to a particular database using a numbered instance is confusing and error-prone. It is far
more intuitive to refer to the same database by using the directory suffix. Note that the -b and -n options are
mutually exclusive. A summary of the various slapadd command-line options is provided in Table 4-2.

Table 4-2. Summary of slapadd command-line arguments

Option Description
-C Continues processing input in the event of errors.
b suffix-n Speci_fy which databasg in the c_onfiguration fi!e to L_Jse by the directory's suffi>_< (- b) or by its location
integer (-n) |n_ the slapd.conf file (the first database listed is numbered 0). These options are mutually
exclusive.
-d integer Specifies which debugging information to log. See the | ogl evel parameter in slapd.conf for a listing

of log levels.

-f filename |Specifies which configuration file to read.

Specifies the LDIF file to use for input. In the absence of this option, slapadd reads data from

-l filename .
standard input.

-v Enables verbose mode. In this mode, slapd prints some additional messages on standard output.

Theslapcat utility dumps the contents of an entire directory (including persistent operational attributes such as
nmodi fyTi meSt anp) in LDIF format. The command-line options for slapcat are identical to the options for slapadd
(Table 4-2), except that the -1 switch specifies an output filename instead of an input filename. In the absence of
this switch, slapcat writes all entries to standard output. slapcat can provide a useful means of backing up the
directory. Unlike the actual DBM datafiles, which are machine- and version-dependent, LDIF is very portable and
allows easier editing in case of corrupted data. | don't mean to discourage you from backing up the DBM files, but
you could do worse than backing up the directory in both forms.

Theslapindex command can be used to regenerate the indexes for a bdb backend. This might be necessary if a
new index was added to slapd.conf after the directory was populated with entries. The slapindex tool shares the
same command-line options as slapadd, with the exception of -I. The -l option isn't used for slapindex because
neither an input nor an output file is needed.

To start populating your directory, create a file containing the LDIF entries of the top-level nodes. These LDIF
entries build the root node and the peopl e organizational unit.

Buil d the root node.
dn: dc=pl ai nj oe, dc=org
dc: plainjoe

obj ectCl ass: dcObj ect

obj ectCl ass: organi zati onal Uni t
ou: PlainJoe Dot Org

Buil d the peopl e ou.

dn: ou=peopl e, dc=pl ai nj oe, dc=org
ou: people

obj ectCl ass: organi zational Unit

Assuming that these entries are stored in a file named /tmp/top.ldif, you can add them to the directory by
executing:

root# slapadd -v -1 /tnp/top.ldif
added: "dc=pl ai njoe, dc=org" (00000001)
added: "ou=peopl e, dc=pl ai nj oe, dc=org" (00000002)

The output indicates that the entries were added successfully.

4.5.1 Verifying the Directory's Contents

Next, you will bring the directory online so that you can use it in conjunction with Idapsearch,ldapmodify, and the
other tools for working on a live directory:

root# /usr/local/libexec/slapd

After the directory server has started, you can use Idapsearch to query the server. Idapsearch allows you to dig
through your directory, test for the existence of data, and test whether access control has been set up correctly.

OpenLDAP'sldapsearch began life as a simple wrapper for the LDAP search operation. The list of search
possibilities is lengthy; | won't cover it until Chapter 5. For now, | will focus on very simple searches that assure
you the directory is up and running correctly. In its simplest form, a query requires the following information:

e The LDAP server's hostname or IP address

e The credentials (i.e., user DN and password) to use to bind to the host

e The search base in the form of a DN

e The scope of the directory to search

A search filter

e A list of attributes to return

We'll start with a "Show me everything"” search. Here, you ask the directory to return all entries that have a value
for the obj ect Cl ass attribute (which is all entries).

$ | dapsearch -x -b "dc=plainjoe,dc=org" "(objectclass=*)"
version: 2

#

filter: (objectclass=*)
requesting: ALL
#

pl ainj oe, dc=org

dn: dc=pl ai nj oe, dc=org

dc: plainjoe.org

obj ectCl ass: dcObj ect

obj ectCl ass: organi zati onal Unit
ou: PlainJoe Dot Og

peopl e, dc=pl ai nj oe, dc=or g

dn: ou=peopl e, dc=pl ai nj oe, dc=org
ou: people

obj ectCl ass: organi zati onal Unit

Search result
search: 2
result: O Success

nunmResponses: 3
nunEntries: 2

Thel dapsear ch options used here are:
- X

Instructsldapsearch to perform a simple bind (i.e., do not use SASL for authentication).
-b dc=pl ai nj oe, dc=org

Defines the DN dc=pl ai nj oe, dc=org as the search's base suffix. This DN specifies the point at which the
search begins. Therefore, it must be a DN that is held by the LDAP server. All entries located higher in the
tree will be ignored.

(obj ectcl ass=*)

The search filter. If you are familiar with filename globbing, or just general wildcard patterns, this filter
should be familiar. RFC 2254 defines ways to represent an LDAP search filter as a string. The syntax of
filters is covered in Chapter 5. For now, it's sufficient to know that this filter matches any value of the
obj ect Cl ass attribute.

The surprising thing about this command is that it doesn't explicitly contain most of the items that | said were
necessary for any search. In fact, the only two items that we can clearly see are the search base and the search
filter. What's going on? Let's look at the missing items one at a time:

The LDAP server's hostname (or IP address)

Idapsearch queries the local host if the server isn't specified explicitly. The - hhost name option specifies the
hostname or IP address. In this case, though, you're running the server locally, so you don't need it.
Credentials used to bind to the directory

The ACL defined in slapd.conf gave read permission to all users. Therefore, you don't need to authenticate
to perform this search. When authentication is required, the - DDN and - wpasswor d options specify the
login DN and password to be used.

The search scope

By default, Idapsearch queries the server for all entries contained in the subtree of the root node defined by
the-b option. Other possibilities include searching only the immediate children of the base suffix entry or
searching this entry alone. The search scope (-s) option can be used to specify either sub,base, or one.

A list of attributes to return

By default, slapd returns all nonoperational attributes. On a complex directory, you might get an extremely
long list of attributes for every entry in the directory. To limit the result to a few specific attributes, list the
attributes you want on the command line, separated by commas. Operational attributes such as

nodi fyTi mest anp and modi i er sName are not returned unless specifically asked for by name or by using

the plus character (+) as the attribute list in the search.

The default values for many LDAP client parameters can be controlled via the system-wide Idap.conf configuration
file (located in the same directory as slapd.conf) or the user-specific version in $HOME/.Idaprc. For more details,
refer to the Idap.conf(5) manpage. Our examples explicitly list all parameters required by the command-line tools
unless the compile-time defaults can be used, which was the case in the previous Idapsearch listing.

Table 4-3 and Table 4-4 list all the options and arguments for Idapsearch. Don't worry about understanding them

all now.

Table 4-3. Command-line options common to Idapsearch, Idapadd, Idapdelete, Idapmodify, and

Idapmodrdn
Option Description
dint Specifies what debugging information to log. See the | ogl evel slapd.conf parameter for a
~d integer listing of log levels.
-D binddn Specifies the DN to use for binding to the LDAP server.

-e
[']ctrl[=ctrlparam]

Defines an LDAP control to be used on the current operation. See also the -M option for the
manageD SAit control.

security_properties

-f filename Specifies the file containing the LDIF entries to be used in the operations.
-H URI Defines the LDAP URI to be used in the connection request.
| Enables the SASL "interactive" mode. By default, the client prompts for information only

when necessary.

-k Enables Kerberos 4 authentication.

-K Enables only the first step of the Kerberos 4 bind for authentication.
Enable the Manager DSA IT control. This option is necessary when modifying an entry that is

-M-MM a referral or an alias. -MM requires that the Manager DSA IT control be supported by the
server.

-n Does not perform the search; just displays what would be done.

-0 Defines the SASL security properties for authentication. See previous information on the

sasl| - secprops parameter in slapd.conf.

-P [2]3]

Defines which protocol version to use in the connection (Version 2 or 3). The default is
LDAPV3.

-Q

Suppresses SASL-related messages such as the authentication mechanism use, username,
and realm.

-R sasl_realm

Defines the realm to be used by the SASL authentication mechanism.

-U username

Defines the username to be used by the SASL authentication mechanism.

-V

Enables verbose mode.

-w password

Specifies the password to be used for authentication.

-W Instructs the client to prompt for the password.
-X Enables simple authentication. The default is to use SASL authentication.
X id Defines the SASL authorization identity. The identity has the form dn:dn or u:user . The

default is to use the same authorization identity as the authenticated user.

-y passwdfile

Instructs the Idap tool to read the password for a simple bind from the given filename.

-Y sasl_mechanism

Instructs the client as to which SASL mechanism should be used. The bind request will fail if
the server does not support the chosen mechanism.

-Z-2Z

Issue a StartTLS request. Use of -ZZ makes the support of this request mandatory for a
successful connection.

Table 4-4. Command-line options specific to Idapsearch

Option

Description

-a

[never|always|search|find]

Specifies how to handle aliases when located during a search. Possible values include
never (the default), al ways,sear ch, or find.

-A For any entries found, returns the attribute names but not their values.
-b basedn Defines the base DN for the directory search.
-F prefix Defines the URL prefix for filenames. The default is to use the value stored in
P $LDAP_FI LE_URI _PREFI X.
-l limit Defines a time limit (in seconds) for the server in the search.
Print the resulting output in LDIFv1 format. -LL causes the result to be printed in
-L-LL-LLL LDIF format without comments. -LLL prints the resulting output in LDIF format

without comments or version information.

-s [sub]base|one]

Defines the scope of the search to be base,one, or sub (the default).

-S attribute Causes the Idapsearch client to sort the results by the value of attribute.
Write binary values to files in a temporary directory defined by the -T option. -tt

-t-tt specifies that all values should be written to files in a temporary directory defined by
the-T option.

T director Defines the directory used to store the resulting output files. The default is the

y directory specified by $SLDAP_TMPD R.
-u Includes user-friendly entry names in the output.
-z limit Specifies the maximum number of entries to return

4.5.2 Updating What Is Already There

Eventually, the information stored in a directory will need to be updated or deleted. While a directory isn't designed
to be updated as frequently as a database, there are very few applications in which the data never changes. This
section covers how to update the data in the directory using Idapmodify. The name Idapmodify is a little
misleading; this utility can add new entries and delete or update existing entries using some of the advanced
features of LDIF for its input language.

The following LDIF listing defines two entries that we will add to our directory:

filename: /tnp/users.|dif

LDIF entry for "Gerald W Carter"
dn: cn=Gerald W Carter, ou=peopl e, dc=pl ai nj oe, dc=org

cn: CGerald W Carter

sn: Carter

mai | : jerry@lainjoe.org

mai | : gcarter @alinux.com

| abel edURI: http://ww. plainjoe.org/
roomNurrber: 1234 Dudley Hall

depar t ment Nurber :
t el ephoneNunber :
pager: 222-555-6789
nobi | e: 222-555-1011

Engi neeri ng
222-555-2345

obj ectcl ass: inetOrgPerson

LDIF entry for "Jerry Carter”
dn: cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=org

cn: Jerry Carter

sn: Carter

mai | : carter @owher e. net

t el ephoneNunber :

555-123-1234

obj ectcl ass: inetOrgPerson

The following command shows how to add these entries to the directory while it is running. Because write
privileges are required to add new entries, ldapmodify binds to the directory using the credentials from the r oot dn
andr oot pwslapd.conf parameters.

$ | dapnodify -D "cn=Manager, dc=pl ai nj oe,dc=org" -w secret \
>-x -a -f /tnp/users.|dif
addi ng new entry "cn=Gerald W Carter, ou=peopl e, dc=pl ai nj oe, dc=or g"

addi ng new entry "cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=or g"

The output indicates that both entries were added successfully. The -D,-w, and -x options to ldapmodify should be
familiar; they specify the DN to use for the modification, specify the password for the modification, and request
simple authentication, respectively. This leaves only two new options to discuss:

-a

Entries are to be added to the directory. The default for Idapmodify is to update existing information.
-f filename

Reads the new entries from the given filename. By default, Idapmodify reads from standard input.

Ifldapmodify returns an error message such as the following, try enabling verbose messages via the -v command-
line switch:

| dap_add: Invalid syntax
addi tional info: value contains invalid data

There are two common causes of this error message. You may have forgotten to include all the necessary schema
files in slapd.conf, or you may have extra whitespace at the end of line in the LDIF file. The set list command in vi
can help you track down extra whitespace.

Refer again to Table 4-3 for a list of the common options for all of these Idap client tools. Table 4-5 lists those
options specific to Idapmodify and Idapadd. Note that Idapadd and Idapmodify are the same executable; I[dapadd is
only a hard link to Idapmodify. The commands differ only in their default behavior, which depends on the name by
which the program was invoked.

Table 4-5. Command-line options specific to Idapadd and Idapmodify

Option Description

-a Adds entries. This option is the default for Idapadd.

-r Replaces (or modifies) entries and values. This is the default for Idapmodify.
-F Forces all change records to be used from the input.

Now let's see how a modification works. Suppose you want to add a URL to the entry for cn=Jerry
Carter, ou=peopl e, dc=pl ai nj oe,dc=or g. To add a URL, use the | abel edURI attribute:

| abel edURI: http://ww. plainjoe.org/~jerry/

In addition, you should delete the gcarter@valinux.com email address for "Gerald W. Carter" because it has
become invalid. You can place both changes in a single LDIF file:

[tnp/ update. | dif

Add a web page location to Jerry Carter.

dn: cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=org
changet ype: nodi fy

add: |abel edUR

| abel edURI: http://ww. plai njoe.org/~jerry/

Renove an emnil address fromGerald W Carter.

dn: cn=Cerald W Carter, ou=peopl e, dc=pl ai nj oe, dc=org
changet ype: nodify

delete: mail

mai | : gcarter@alinux.com

Thechanget ype keyword in the LDIF file is the key to modifying existing entries. This keyword can accept the
following values:

add

Adds the entry to the directory.
del ete

Deletes the entry from the directory.
nodi fy

Modifies the attributes of an entry. With this keyword, you can both add and delete attribute values.
nmodr dn

Changes the RDN of an entry.
noddn

Changes the DN of an entry.

This LDIF file tells Idapmodify what changes to make. We'll invoke Idapmodify with the verbose (-v) option so you
can follow the update operations more closely. The -a option isn't needed because you're not adding new entries.

$ I dapnodify -D "cn=Manager, dc=pl ai nj oe, dc=org" -w secret
> -x -v -f /tnp/update. | dif
I dap_initialize(<DEFAULT>)
add | abel edURI:
http://ww. plai njoe.org/~jerry/
nodi fying entry "cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=or g"
nodi fy conpl ete

del ete mail:

gcarter @al i nux. com
nodi fying entry "cn=Gerald W Carter, ou=peopl e, dc=pl ai nj oe, dc=or g"
nodi fy conpl ete

Notice that the LDIF file is parsed sequentially from the top. Therefore, later LDIF entries can modify entries
created previously in the file. You can also create an LDIF file with entries having different changet ype values. For
example, the follow LDIF file adds an entry for user Peabody Soup, adds a new t el ephoneNunber to Jerry
Carter's entry, and finally deletes the previously created entry for Peabody Soup.

|t np/ changet ypes. | di f

Add entry for Peabody Soup

dn: cn=Peabody Soup, ou=peopl e, dc=pl ai nj oe, dc=org
changet ype: add

cn: Peabody Soup

sn: Soup

obj ectcl ass: inetOrgPerson

Add new t el ephoneNunber for Jerry Carter.

dn: cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=org
changet ype: nodify

del ete: tel ephoneNunber

t el ephoneNunber: 555-123-1234

add: tel ephoneNunber
t el ephoneNunber: 234-555-6789

Renove the entry for Peabody Soup.
dn: cn=Peabody Soup, ou=peopl e, dc=pl ai nj oe, dc=org
changet ype: del ete

A couple of facts about this LDIF file are worth mentioning:

e Entries are separated by a blank line, as noted earlier.

e Multiple changes to a single entry using the nodi f y changetype are separated by a single dash (-) on a line
by itself. These should be handled as a single change by the server. Either all the changes for this DN take
effect or none are applied.

Thenodi f y changetype supports add and del et e keywords for adding and deleting attribute values. In order to
delete the value of an attribute, the del et e: must immediately be followed by an attri but etype:val ue pair.
It's necessary to specify the value you're deleting because some attributes can hold multiple values. Specifying
which value to remove eliminates any ambiguity about what you want to do. When the last value of an attribute is
removed from an entry, that attribute is no longer present in the entry.

Here's how to apply this second set of changes to the directory. Again, we've specified the -v option to see how
Idapmodify processes the LDIF file.

$ | dapnodify -D "cn=Manager, dc=pl ai nj oe,dc=org" -w secret -x -v -f
/tp/ changet ype. | di f
I dap_initialize(<DEFAULT>)
add cn:
Peabody Soup
add sn:
Soup
add obj ectcl ass:
i net OrgPer son
addi ng new entry "cn=Peabody Soup, ou=peopl e, dc=pl ai nj oe, dc=or g"
nodi fy conpl ete

del et e tel ephoneNunber :
555-123-1234
add tel ephoneNunber :
234-555- 6789
nodi fying entry "cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=or g"
nmodi fy conpl ete

del eting entry "cn=Peabody Soup, ou=peopl e, dc=pl ai nj oe, dc=org"
del ete conpl ete

Modifying the RDN of an entry takes a little more thought than adding an entry or changing an attribute of an
entry. If the entry is not a leaf node, changing its RDN orphans the children in the directory because the DN of
their parent has changed. You should make sure that you don't leave orphaned nodes in the directory—you should
move the nodes with their parent or give them a new parent. With that in mind, let's think about how to change
the RDN of the entry:

dn: cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=org
fromcn:JerryCarter tocn:GerryCarter. Here's the LDIF file that makes the changes:

[t np/ modrdn. | di f

Change the RDN from "Jerry Carter" to "Gerry Carter.”
dn: cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=org

changet ype: nodrdn

new dn: cn=Cerry Carter

del eteol drdn: 1

You can also use the Idapmodrdn command to perform the same task:

$ | dapnodrdn \
> "cn=Jerry Carter, ou=peopl e, dc=pl ai nj oe, dc=or g" \
> "cn=Gerry Carter"

Not counting the DN of the entry to be changed and the new RDN value, the Idapmodrdn tool has three command-
line options besides those common to the other OpenLDAP client tools (Table 4-3). These additional options are

listed in Table 4-6.

Table 4-6. Command-line options specific to Idapmodrdn

Option Description
-C Instructsldapmodrdn to continue if errors occur. By default, it terminates if there is an error.
Removes the old RDN value. The default behavior is to add another RDN value and leave the
-r old value intact. The default behavior makes it easier to modify a directory without leaving
orphaned entries.
-s Defines the new superior, or parent, entry under which the renamed entry should be
new_superior_node |located.

If an entire subtree of the directory needs to be moved, a better solution may be to export the subtree to an LDIF
file, modify all occurrences of the changed attribute in all the DNs, and finally re-add the subtree to the new
location. Once the information has been entered correctly into a location, you can then use a recursive ldapdelete
to remove the old subtree.

Idapdelete possesses all of the command-line options common to Idapsearch and Idapmodify. The only new option
is-r (recursive), which deletes all entries below the one specified on the command line, in addition to the named
entry. Note that this deletion is not atomic; entries are deleted individually. The following command deletes the
entireou=peopl e subtree:

$ | dapdel ete -D "cn=Manager, dc=pl ai nj oe,dc=org" -w secret -x \
> -r -v "ou=peopl e, dc=pl ai njoe, dc=or g"

| dap_initialize(<DEFAULT>)

del eting entry "ou=peopl e, dc=pl ai nj oe, dc=or g"

del eting children of: ou=peopl e, dc=pl ai nj oe, dc=or g

del eting children of: cn=Gerald W Carter, ou=peopl e, dc=pl ai nj oe, dc=org
removing cn=CGerald W Carter, ou=peopl e, dc=pl ai nj oe, dc=org
cn=Cerald W Carter, ou=peopl e, dc=pl ai nj oe, dc=org renoved

del eting children of: cn=Gerry Carter, ou=peopl e, dc=pl ai nj oe, dc=org
renmovi ng cn=Gerry Carter, ou=peopl e, dc=pl ai nj oe, dc=org
cn=CGerry Carter, ou=peopl e, dc=pl ai nj oe, dc=org r enoved

Del ete Result: Success (0)

Now that you have a working directory, a good exercise would be to experiment with various ACLs to restrict
access to certain attributes. This exercise will also help you become more comfortable with the tools presented in
this chapter. Use the slapcat tool to dump the directory to an LDIF file and start over from scratch until you are
comfortable with adding, deleting, and modifying entries. The next chapter explores creating a distributed
directory, replicating information to multiple servers, more searching techniques, and some advanced ACL
configurations.

[TeamLiB] [« ereviovs)

[Team LB] [<ereviovs)

4.6 Graphical Editors

Working with command-line tools and LDIF files is constructive, but certainly not convenient. There are a number
ofgraphical editors and browsers for LDAP that make it easier to see what you're doing. | won't discuss any of
these in detail, but I'll give you some pointers to some tools that are worth looking at:

GQ (http://biot.com/gq/)

GQ is a GTK+-based LDAPv3 client capable of browsing the subSchema entry on LDAPV3 servers. It is
distributed under the GNU GPL and includes features such as:

e Support for browsing or searching LDAP servers

e Support for editing and deleting directory entries

e Support for creating template entries based on existing ones

e Support for exporting subtrees or an entire directory to an LDIF file

e Support for multiple server profiles

e SASL authentication
Java LDAP Browser/Editor (http://www.iit.edu/—gawojar/Ildap/)

This is an editor written in Java using the JNDI class libraries. It supports:

e LDAPv2 and v3 servers, including SSL connections
e Editing attribute values

e Searching for specific entries

e Exporting and importing data using LDIF files

e Creating template entries

e Utilizing multiple server profiles
Softerra LDAP Browser (http://www.ldapbrowser.com/)

The Softerra LDAP Browser is a freely available, Win32-based browser and editor for Windows 98/NT/2000
clients. The browser has the following qualities:

e Support for a familiar Windows Explorer-like interface

e Support for LDAPvV2 and v3

e Support for SSL connections for v3 sessions

e Support for multiple server profiles, similar to the GQ editor

e Support for exporting entries and subtrees to an LDIF file

[Team Lig] [ersvious]

http://biot.com/gq/
http://www.iit.edu/~gawojar/ldap/
http://www.ldapbrowser.com/

[Team LB] [<ereviovs)

Chapter 5. Replication, Referrals, Searching, and SASL Explained

The previous chapters have prepared the foundation for understanding and building an LDAP-based directory
server. This chapter presents some of the more advanced features provided by LDAP and shows how to use these
features in your directory service. As such, this chapter ties up a lot of loose ends that have been left hanging by
the previous discussions.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

5.1 More Than One Copy Is "a Good Thing"

We begin by exploring directory replication. This feature hasn't been standardized yet; our example focuses on the
OpenLDAP project. The concepts and principles that | will present are applicable to all LDAP directories, but the
examples themselves are specific to OpenLDAP.

Because LDAP replication is vendor-specific at the moment, it is not possible to replicate data from one vendor's
server to another vendor's server. It is possible to achieve cross-vendor replication by using tricks such as parsing
a change log, but these tricks are themselves vendor-dependent.

"_-‘~ TheLDAP Duplication/Replication/Update Protocols (LDUP) Working Group of the IETF
o attempted to define a standardized replication protocol that would allow for interoperability
L
et f;. between all LDAPv3-compliant servers. However, there appears to be more demand for an

LDAP client update protocol (LCUP) that would allow clients to synchronize a local cache of
a directory as well as be notified of updates. Details of the group's progress can be found
athttp://www.ietf.org/html.charters/ldup-charter.html.

A frequently asked question is: "When should I install a replica for all or part of my directory?" The answer
depends heavily on your particular environment. Here are a few symptoms that indicate the need for directory
replicas:

e |If one application makes heavy use of the directory and slows down the server's response to other client
applications, you may want to consider installing a replica and dedicating the second server solely to the
application that is causing the congestion.

e |If the directory server does not have enough CPU power to handle the number of requests it is receiving,
installing a replica can improve response time. You may also wish to install several read-only replicas and use
some means of load balancing, such as round-robin DNS or a virtual server software package. Before taking
this route, make sure that the limiting factor is CPU and not other finite resources such as memory or disk
1/0.

e |f a group of clients is located on the other side of a slow network link, installing a local replica (i.e., a replica
that is close to the clients making the request) will decrease traffic over the link and improve response time
for the remote clients.

e |If the directory server cannot be taken offline for backups, consider implementing a read-only replica to
provide service while the master server is taken down for backups or normal maintenance.

e |If your directory is a critical part of the services provided by your network, using replicas can help provide
failover and redundancy.

Once the questions of "When?" and "Why?" have been answered, the next question is "How?" The OpenLDAP
project uses the original design for replication that was implemented by the University of Michigan's LDAP server.
This design uses a secondary daemon (slurpd) to process a change log written by the standalone LDAP server
(slapd). slurpd then forwards the changes to the replica's local slapd instance using normal LDAP modify
commands.Figure 5-1 displays the relationship between slapd and slurpd on the master directory server and the
replica.

Figure 5-1. Dependencies between slapd, the change log, and the slurpd replication helper

http://www.ietf.org/html.charters/ldup-charter.html

Master directory

erver
: = Replica directory
wriles SErver

Replication
i filie

5.1.1 Building slurpd

When you built the OpenLDAP package in Chapter 3, you didn't build the slurpd binary. To build slurpd, you must
pass the command-line option —enable-slurpd to the configure script. Note that thread support is required for
slurpd; there is no nonthreaded version.

After running ./configure with the —enable-slurpd option, executing make creates the server in the servers/slurpd/
subdirectory of the OpenLDAP source code tree. This binary can then be copied to the same location as slapd. You

can copy slurpd to the appropriate location by hand or by running make install. All of the examples in this chapter

assume that slurpd has been installed in the default location of /usr/local/libexec/ .

5.1.2 Replication in a Nutshell

Before implementing replication in a directory, you must have a working LDAP master server. The directory server
built in previous chapters will be used as a starting point. Once the master slapd server has been created,
implementing a replica server can be accomplished by following these steps:

1. Stop the master server's slapd daemon.

2. Reconfigure the master server's slapd.conf to enable replication to the new slave server.

3. Copy the database from the master server to the replica.

4. Configure the replica server's slapd.conf.

5. Start the replica server's slapd process

6. Start the master server's slapd process.

7. Start the master server's slurpd process.

This quick list glosses over a few details, such as how to configure a server to send updates and how to configure a
server to accept updates from a master server. Let's start with step 2 (if step 1 is not obvious, refer to Chapter 4
for a refresher on starting and stopping slapd).

5.1.3 Configuring the Master Server

To configure your master server to log changes that can be processed by the slurpd helper daemon, you need to
add two directives to the database section of slapd.conf. It is possible to give slurpd its own configuration file using
the-f command-line option, but because of the producer/consumer relationship between slapd and slurpd, the
most common setup is to use a single configuration file for both daemons. Here's the database configuration
developed in the previous chapter:

-- master slapd --

HHH R R R R
Define the beginning of exanpl e dat abase.

dat abase bdb

Define the root suffix you serve.

suf fix "dc=pl ai nj oe, dc=or g"

Define a root DN for superuser privileges.
root dn "cn=Manager, dc=pl ai nj oe, dc=or g"

Define the password used with rootdn. This is the Base64-encoded MXb hash of
"secret."
r oot pw {SSHA} 2aks| ai c Avwc+DhCr XUFI hgWsbBJPLXxy

Directory containing the database files
directory /var /| dap/ pl ai njoe. org

Files should be created rw for the owner **only**.
node 0600

| ndexes to nmintain
i ndex obj ect Cl ass eq
i ndex cn pres, eq

db tuning parameters; cache 2,000 entries in menory
cachesi ze 2000

Sinple ACL granting read access to the world
access to *
by * read

First, you need to add the name of the log file in which slapd will record all LDAP modifications. This is specified
using the r epl ogf i | e parameter.

-- master slapd --
Specify the location of the file to append changes to.
replogfile /var/ | dap/sl apd. repl og

Theslurpd daemon will use only the first instance of the r epl ogf i | e parameter in a

configuration file. On a server that is configured to hold multiple databases, all of these
partitions must use a single r epl ogf i | e value. The best way to do this is to define the
repl ogf i | e parameter in the configuration file's global section. In this way, the value will
be used for all databases defined later in slapd.conf. The alternative is to start a separate
slurpd instance, each with its own configuration file, for each database section.

The second parameter you need to add informs slurpd where to send the changes. You add this parameter,
replica, just below the r epl ogfi | e directive.

-- master slapd --
Set the hostnane and bind credentials used to propagate the changes in the
replogfile.
replica host=replical. pl ai nj oe.org: 389
suf fi x="dc=pl ai nj oe, dc=or g"
bi nddn="cn=replica, dc=pl ai nj oe, dc=or g"
credential s=MyPass
bi ndmet hod=si npl e
tl s=yes

repl i ca specifies the host and port to which the data should be sent, the portion of the partition to be replicated,
the DN to use when binding to the replicated server, any credentials that are acquired, and information about the
binding method and protocols. Note that the bi nddn used in the r epl i ca directive must possess write access to
the slave server. The most common bi nddn to use is the the r oot dn specified in the replica's slapd.conf.
However, any DN that has the appropriate level of access (possibly granted by ACLs on the directory) will work.
Thecredent i al s parameter specifies the password used for simple binds and SASL binds to the slave server. The
bi ndmet hod option for the r epl i ca directive accepts one of the following two values: si npl e or sas| . Examples
using SASL accounts with OpenLDAP will be presented later in this chapter.

In our example, the slave server replical.plainjoe.org must be listening on the default LDAP port of 389. TLS is
enabled (t | s=yes) to protect the privacy of information as it is replicated. Because the LDAP connection will be
made on port 389, it is essential that the slave server support the StartTLS extended command to ensure secure
replication. Regardless of how careful you are about securing the data in your directory, if you are replicating the
directory to a slave server over an insecure link and do not use some type of transport layer security such as TLS
or IPSec, all of your efforts will be in vain.

5.1.4 Configuring the Replica Server

The first step in creating a replica is to initialize its database with a current copy of the directory from the master
server. There are two ways to accomplish this:

e Copy the master's database files to the replica.
e Export the master's database to an LDIF file and reimport the entries into the replica.

There are a few restrictions to keep in mind when copying the actual database files from the master to the slave
server:

e Both hosts must have the same (or compatible) versions of the DBM libraries.
e In most cases, both hosts must use the same byte ordering (little-endian versus big-endian).

e Some methods of copying DBM sparse files, such as using cp, will fill in the holes, resulting in much larger
files on the replica host.

For these reasons, a more general way to transfer the master's database is to export the database to an LDIF file
usingslapcat. The file can then be imported into the replica's directory using the slapadd command. Using the
slapd.conf file from your directory, the following commands initialize the replica's directory:

root @rast er# sl apcat -b "dc=pl ainj oe,dc=org" -1 contents.|dif
...copy contents.ldif to the slave server...

root @eplical# slapadd -1 contents.|dif

In this example, specifying the base suffix with the -b option is not necessary because your server contains only
one partition. Had there been more than one database section in slapd.conf, the base suffix would have specified
which partition to dump. Specifying a base suffix isn't necessary when you import the file into the replica because
slapadd parses the configuration file and places the data into the first database to match the base suffix of the
LDIF entries.

Once the data has been copied to the slave server, it is time to update the replica's slapd.conf to accept updates
from the master server. The global section of the replica's configuration file will be identical to the master server’s.
However, certain pieces of information, such as the server's public certificate, should be unique to the slave. The
database section of the slave's slapd.conf will also be identical, minus the replication parameters and with an
appropriate local r oot dn and r oot pw. For the purposes of this chapter, the slave's database section contains the
followingr oot dn and r oot pw:

-- slave slapd --
replica s admnistrative DN
root dn "cn=replica, dc=pl ai njoe, dc=org"

Salted Secure Hash version of MyPass
r oot pw { SSHA} SMKNFPO435G+Qst | zZNGh4RG TOKLZ 2TV

To make the server act as a slave, you must add two parameters to the configuration. Just as the master must
know where to send updates, the slave server must know who is authorized to make these changes. This is done

by defining an updat edn:

-- slave slapd --

Define the DN that will be used by the naster slurpd to replicate data. Normally,
this is the rootdn of the slave server or, at the mininum a DNthat is all owed
wite access to all entries via an ACL.

updat edn "cn=replica,dc=pl ai nj oe, dc=or g"

Because a slave server contains only replicated data and OpenLDAP currently supports only a single master
replication system (i.e., updates must be made on the master directory server), the slave server requires an LDAP
URL (updat er ef) that points clients to the master directory server. The slave refers clients to the master when
clients send modification requests. Here's the appropriate addition to the database section of the replica's
slapd.conf:

-- slave slapd --
Specify the LDAP URL of the master server, which can accept update requests.
updat er ef | dap: / / pogo. pl ai njoe. org

"_-‘~ Development versions of OpenLDAP support an experimental implementation of a
F I multimaster replication protocol. Multimaster replication means that changes to the
- . . .
w #: directory can be accepted at any replica: the replica propagates the changes to all servers

containing copies of the partition. Multimaster replication is not covered in this book.

This completes step 4 of the configuration process. Steps 5 and 6 are to launch the master and slave's slapd
processes using the procedure described in earlier chapters.

5.1.5 slurpd's replogfile

AsFigure 5-1 illustrates, the slurpd daemon processes the change log written by slapd. The replication log uses a
format similar to the LDIF examples used throughout this book. After reading the r epl ogf i | e,slurpd copies the
entry to its own replay log. The location of the slurpd.replog file can be controlled using the -t command-line option
when starting slurpd. In a default installation, slurpd.replog will be stored in /usr/local/var/openldap-slurp/replica/.

The following log entry in the r epl ogf i | e was generated when the email address for cn=Jerry
Carter, ou=peopl e, dc=pl ai nj oe, dc=or g was changed to j cart er @owhere. con

replica: pogo.plainjoe.org

time: 975434259

dn: cn=jerry carter, ou=Peopl e, dc=pl ai nj oe, dc=org
changet ype: nodify

repl ace: nmail

mai | : jcarter @owhere. com

repl ace: entryCSN

ent ryCSN: 2002110403: 55: 49Z#0x0001#0#0000
repl ace: nodifiersNane

nodi fiersName: cn=Manager, dc=pl ai nj oe, dc=org
repl ace: nodi fyTi mestanp

nmodi fyTi mest anp: 20001128175739Z

While only one attribute value was changed, the replication log entry updates four attributes: mai | (as expected),
plusmodi f i er sName,nmodi f yTi mest anp, and ent r yCSN. These last three attributes, two of which are described
in RFC 2251, are maintained by the LDAP server and cannot be modified by clients.

The log entry also specifies two additional values not used in normal LDIF entries. The r epl i ca directive defines
the host to which the change should be propagated. There can be multiple r epl i ca lines if a partition will be
synchronized to several directory slaves. The t i me parameter defines the timestamp of the entry in seconds since
1970 GMT. slurpd maintains the timestamp of the most recently read change, which prevents it from reparsing
entries it has already processed. This state information is stored in a status file named slurpd.status in the same
directory as the slurpd.replog file.

slurpd reads entries in the replication log file one at a time and propagates the changes using basic LDAP
commands (e.g., add,modify,delete,modrdn, etc.). If a change cannot be made, slurpd writes the entry and

reason for the failure to a reject log named <hostname:port>.rej in the same directory as the slurpd.replog file.
It's the administrator's responsibility to read this log and figure out how to handle changes that were not made.
There are many possible reasons for failure—for example, a conflict between the schemas on the master and slave
servers, access control entries that aren't set up appropriately, etc.

Certain errors, such as a network problem in the connection from the server to the slave, cause slurpd to requeue
a modification. However, any entry written to the reject log cannot be replicated in its current state. These entries
will require manual intervention on a case-by-case basis. If the update resulted in an object schema violation,
perhaps one of the schema files was left out of the configuration file. If the replica arrived in a state inconsistent
with the directory master, attempting to add an entry that already existed would also result in an error. These
types of circumstances can be very data-specific, and the examples given here represent only a few of the possible
causes. In any case, the appropriate response to an error isn't to try to update the slave by hand; rather, you
should figure out why the update can't take place automatically, and fix the appropriate configuration file.

Our setup will utilize slurpd as a daemon that monitors the replication log file and propagates changes periodically.

However, it can also operate as a command-line tool to process a single change log and exit. This is referred to as

"one shot" mode, and it's invaluable for dealing with rejected entries. A complete list of command-line options used
when starting slurpd is given in Table 5-1.

Table 5-1. Command-line options for slurpd

Option Description
d integer Specifies the debugging information to be written to the log. See the discussion of the | ogl evel
-d i . .]
9 slapd.conf parameter for more information on the debugging flags.
-f "config
. " Specifies the location and filename of the slapd.conf file to be used.
filename
r replogfile Specifies the location and filename of the replication log to be processed. The -r switch is often
plog used in conjunction with the slurpd’'s one-shot mode to process a particular file.
-0 Executesslurpd in one-shot mode to process a single replication log and exit.
t directory Specifies the directory to be used for temporary files such as lock and status files. The default is to

store the files in /usr/local/var/openldap-slurp/replica/.

Specifies the location of the srvtab file when using LDAPv2 Kerberos 4 binds to a slave slapd
server.

-k "srvtab file"

To complete the configuration of your directory replica, you must start the slurpd daemon on the master server. To
do so, execute slurpd as root from a shell prompt:

root @raster# /usr/local/libexec/sl urpd

From this point on, any changes made to the master directory will be replicated to the slave server. In current 2.x
versions, the slurpd thread responsible for monitoring the replication log checks every three seconds for updates
and propagates these updates as necessary. This interval is not configurable from the command line nor from
slapd.conf. However, if less frequent updates are required, slurpd could be run manually using the -o argument to
process the replication log when desired.

Using a Replica in a Backup Plan

Backing up a directory that must be available 24 hours a day can require special arrangements. By
using replication, a slave server can act as a backup server.

Even if the backup plan relies on offline storage, a directory replica can be very helpful. If you stop the
slurpd daemon on the master server, the replica server contains a read-only copy of the directory at
that point in time. Of course, the master slapd continues to write changes to the replogfile. You can
now use slapcat on the slave to dump the database files to LDIF while slapd is running because data is
guaranteed not to change in mid-backup. Once the backup is complete, restarting slurpd ensures that
all changes made to the master while the replica was being backed up will propagated, bringing the
slave in sync with the current state of the directory.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

5.2 Distributing the Directory

The scenarios presented thus far have all assumed that the entire directory consists of a single partition on one
server. In the real world, this may not always suffice. There are many reasons (which | touched on in Chapter 2)
for splitting a directory into two or more partitions, which may reside on multiple servers.

Let's assume that, according to Figure 5-2, the top level of your directory server (dc=pl ai nj oe, dc=org) is
maintained by one department, and the server containing host information (ou=host s, dc=pl ai nj oe, dc=or g) is
managed by another. How can these two directories be combined into one logical DIT?

Figure 5-2. Two separate directory partitions held by different servers

te=plainjos,dc=nm

ou=hosts,de=plainjoe, de=org

The definition for the ou=host s partition held by the second server is very similar to the database section we have
been using so far. The main changes are to the suffix served by the backend (ou=host s, dc=pl ai nj oe, dc=or g)
and the directory in which the BerkeleyDB files are stored (/var/ldap/hosts/). The r oot dn

(cn=Manager, ou=host s, dc=pl ai nj oe, dc=or g) must also be updated due to the requirement that it must exist
within the partition's naming context.

HH HH TR AR R R R R R R R R
Partition on second server hol di ng ou=hosts
dat abase bdb

Define the root suffix you serve.
suf fix "ou=host s, dc=pl ai nj oe, dc=or g"

Define a root DN for superuser privileges.
r oot dn "cn=Manager, ou=host s, dc=pl ai nj oe, dc=or g"

Define the password used with rootdn. This is the Base64-encoded MX% hash of
"secret."
r oot pw { SSHA} 2aks| ai c Avwc+DhCr XUFI hgWsbBJPLxy

Directory containing the dat abase files
directory /var /| dap/ host s

Files should be created rw for the owner **only**.
node 0600

| ndexes to maintain
i ndex obj ect Cl ass eq
i ndex cn pres, eq

db tuning paraneters; cache 2,000 entries in nmenory
cachesi ze 2000

Sinmple ACL granting read access to the world
access to *

by * read

Chapter 2 described a distributed directory implemented by superior knowledge references (referrals) that point
from the root of a subtree to the server of the larger directory, and subordinate knowledge references (references)
that point from a node in the larger directory to the subtree, or partition, to which it should be attached. In terms
ofFigure 5-2, these knowledge references would link the dc=pl ai nj oe, dc=or g partition to

ou=host s, dc=pl ai nj oe, dc=or g, as shown in Figure 5-3.

Figure 5-3. Connecting the two partitions using a referral and a reference

Superior knowledge
referene

A *
Subardingte knowlerige

refenene
ou=hosts,de=plainjoe, de=org

These connecting links allow a client to request a search that starts at any node in the directory and continues
down through the directory tree, traversing all the directory's partitions. In this case, the search reference URI is
returned to the client, which then has the option of continuing the search using the new server and the new base
suffix.

Theslapd.conf for the server holding the ou=host s tree possesses a global section identical to your existing

server, with one exception. OpenLDAP uses the r ef erral global parameter to define an LDAP URI for the server's
superior knowledge reference. This feature is implemented as a global, server-wide parameter as opposed to a
database-specific directive because a superior knowledge reference refers the client to a server that has knowledge
that the server receiving the request does not possess. Normally, this superior server would be higher in the
directory tree, but OpenLDAP does not enforce this rule. If the ou=host s partition is held by a server separate
from one containing the top-level naming context, the r ef erral parameter would look similar to the following:

sl apd. conf for ou=hosts (I|dap2.plainjoe. org)

#it

<Precedi ng portion of gl obal section omtted>

#t ..

Define the URL (only host:port) for the host that clients should contact in the
event that you cannot service their requests.

referral | dap: // mast er. pl ai nj oe. org: 389/

Subordinate knowledge references are implemented as entries within the directory itself. These entries use the

r ef erral structural object class defined in RFC 3296. This class contains a single required attribute named r ef ,
which holds the LDAP URI for the root of the subtree. So to connect the top-level partition in Figure 5-3 to the
peopl e organizational unit, you must create the referral entry to the directory. Assuming that the ou=host s
naming context is held by a server named Idap2.plainjoe.org, this Idapadd example reads the new entry from
standard input:

$ | dapadd -H ldap://localhost/ -D "cn=Manager, dc=pl ai nj oe, dc=org" \
> -w secret -x << EOR

> dn: ou=hosts, dc=pl ai nj oe, dc=org

> ou: people

> obj ect Cl ass: extensi bl eObj ect

> obj ect Class: referral

> ref: |dap://1dap2. pl ai nj oe. or g/ ou=hosts, dc=pl ai nj oe, dc=org

> EOR

addi ng new entry "ou=hosts, dc=pl ai nj oe, dc=org"

3088. This control enables a client to access the actual attribute values (including the r ef
attribute) in a referral entry without having the server return the referral itself. If a need
arises to update a referral entry, enable this control by using the -M (or -MM) command-
line option to Idapmodify.

:i The OpenLDAP server implements the ManagerDSAIT LDAP control defined in the RFC

Next, create a sample in the ou=host s tree Idap2.plainjoe.org for later use:

$ | dapadd -H I dap://|dap2. pl ai njoe. org/ \

> - D "cn=Manager, ou=host s, dc=pl ai nj oe, dc=or g" \

> -w secret -x << EOR

> dn: ou=hosts, dc=pl ai nj oe, dc=org

> obj ectclass: organizational Unit

> ou: hosts

> description: Container for host infornation in plainjoe.org donmain
> EOR

addi ng new entry "ou=hosts, dc=pl ai nj oe, dc=org"

The next section will show you how to handle these search references when querying the directory using
Idapsearch.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

5.3 Advanced Searching Options

Chapter 4presented LDAP searches as a means of verifying the correctness of your directory. That's obviously a
very limited use of the search capability: a directory isn't much use if you can't search it. Given our limited goals in
the previous chapter, we didn't do justice to the topic of search filters. It's now time to take a more thorough look
at the topic of filters.I11

[11 For the full details of representing LDAP searches using strings, read RFC 2254.
In its commonly used form, an LDAP search filter has the following syntax:

(attributefilterOperatorval ue)

Theattri but e is the actual name of the attribute type. The fil t erOperat or is one of:

For equality matches

For approximate matches

For less than comparisons

For greater than comparisons
If you deal only with string comparisons, you may only need the equality operator.

Theval ue portion can be either an absolute value, such as car t er or 555- 1234, or a pattern using the asterisk
(*) character as a wildcard. Here are some wildcard searches:

(cn=*carter)

Finds all entries whose cn attribute ends in "carter” (not just those with a last name of Carter)
(tel ephoneNunber =555%*)

Finds all telephone numbers beginning with 555
You can combine single filters like these using the following Boolean operators:
&

Logical AND

Logical OR

Logical NOT

LDAP search filters use prefix notation for joining search conditions. Therefore, to search for users with a surname
(sn) of "smith" or "jones," you can build the following filter:

(| (sn=smi th)(sn=jones))

Thesn attribute uses a case-insensitive matching rule, so it doesn't matter whether you use "Smith,” "smith," or
"SMITH" in the filter (or in the directory itself). To look for people with a last name of "smith" or "jones" and a first
name beginning with "John," the search would be modified to look like:

(& | (sn=smth)(cn=jones))(cn=john*))

Note that the (cn=j ohn*) search filter matches any cn that begins with "john": it matches cn=j ohndoe as well
ascn=j ohnat hondoe.

5.3.1 Following Referrals with Idapsearch

By default, the Idapsearch tool shipped with OpenLDAP 2 prints information about referral objects but does not
automatically follow them. For example, let's use ldapsearch to list all entries in your directory that possess an ou
attribute:

$ | dapsearch -H ldap://1ocal host/ -LL -x \
> -b "dc=pl ai nj oe, dc=org" " (ou=*)" ou

plainjoe.org
dn: dc=pl ai nj oe, dc=org
ou: PlainJoe Dot Org

peopl e, plainjoe.org
dn: ou=peopl e, dc=pl ai nj oe, dc=org
ou: people

Search reference
refldap:/ /| dap2. pl ai nj oe. org/ ou=host s, dc=pl ai nj oe, dc=or g??sub

Note that Idapsearch returned the referral value, but not the entries below the ou=host s, dc=pl ai nj oe, dc=org
naming context. This information is obviously useful when you're trying to debug a directory tree that is distributed
between several servers, but it's not what you want if you only intend to look up information. To follow the search
referral, give the -C (chase referrals) option when you invoke Idapsearch:

$ | dapsearch -H ldap://Iocal host/ -LL -x \
> -b "dc=pl ai nj oe, dc=org" "(ou=*)" ou

plainjoe.org
dn: dc=pl ai nj oe, dc=org
ou: PlainJoe Dot Og

peopl e, plainjoe.org
dn: ou=peopl e, dc=pl ai nj oe, dc=or g
ou: people

hosts, plainjoe.org
dn: ou=host s, dc=pl ai nj oe, dc=or g
ou: hosts

5.3.2 Limiting Your Searches

A production directory can easily grow to thousands or millions of entries—and with such large directories, searches
with filters such as (obj ect cl ass=*) can put quite a strain on the directory server and generate more output
than you want to deal with. Therefore, Idapsearch lets you define limits for both the client and the server that
control the amount of time a search is allowed to take and the number of entries it is allowed to return. Table 5-2
lists the Idapsearch parameters that limit the resources required by any search.

Table 5-2. Command-line parameters for defining search limits in ldapsearch

Parameter Description

Specifies the number of seconds in real time to wait for a response to a search request. A value of 0

-l integer removes the tinmel imt default in Idap.conf.

Defines the maximum number of entries to be retrieved as a result of a successful search request. A

-z Integer |\ alue of 0 removes the limits set by the sizel im t option in Idap.conf.

You can also specify limits on the server, in the slapd.conf file. Table 5-3 lists the global parameters that limit
searches.

Table 5-3. OpenLDAP 2 slapd.conf global search limit parameters

Parameter Description
sizelimt Defines the maximum number of entries that the server will return to a client when responding
i nteger to a search request. The default value is 500 entries.
tinelint Specifies the maximum number of seconds in real time to be spent when responding to a
i nteger search request. The default limit is 1 hour (3,600 seconds).

[Team Lig] [eeevious]

[Team LB] [<ereviovs)

5.4 Determining a Server's Capabilities

Chapter 2alluded to two new LDAPv3 features: the subschemaSubent ry and the r oot DSE objects. Both of these
objects allow clients to find out information about a previously unknown directory server.

Ther oot DSE object contains information about features such as the server naming context, implemented SASL
mechanisms, and supported LDAP extensions and controls. LDAPv3 requires that the r oot DSE has an empty DN.
To list the r oot DSE, perform a base-level search using a DN of "". OpenLDAP will provide only values held by the
r oot DSE if the search requests that operational attributes be returned, so the + character is appended to the
search request.

$ | dapsearch -x -s base -b "" "(objectclass=*)"

dn:

structural Obj ect d ass: OpenLDAProot DSE
nam ngContexts: dc=plainjoe, dc=org
supportedControl : 2.16.840.1.113730.3.4.2

supportedControl : 1.3.6.1.4.1.4203.1.10.2
supportedControl : 1.2.826.0.1.334810.2.3
supportedExtension: 1.3.6.1.4.1.4203.1.11.3
supportedExtension: 1.3.6.1.4.1.4203.1.11.1
supportedExtension: 1.3.6.1.4.1.1466. 20037

supportedFeatures: 1.3.6.1.4.1.4203.1.5.1
supportedFeatures: 1.3.6.1.4.1.4203.1.5.2
support edFeatures: 1.3.6.1.4.1.4203.1.5.3
supportedFeatures: 1.3.6.1.4.1.4203.1.5.4
supportedFeatures: 1.3.6.1.4.1.4203.1.5.5

support edLDAPVer si on: 3

support edSASLMechani sms: GSSAPI
support edSASLMechani sns: DI GEST- MD5
support edSASLMechani sms: CRAM M6
subschemaSubent ry: cn=Subschena

This list can change over time and will vary from server to server. Our example shows us that this server supports:

StartTLS (OID 1.3.6.1.4.1.1466.20037) and two other extended operations

ManageDsalT (OID 2.16.840.1.113730.3.4.2) and two other LDAP controls

LDAPv3 operations only

The GSSAPI, DIGEST-MD5, and CRAM-MD5 SASL mechanisms

A single naming context of "dc=pl ai nj oe, dc=org"
There may be additional attributes and values, depending on the LDAP server.

TheSubSchemaSubent r y attribute specifies the base search suffix for querying the schema supported by the
server. This means that clients can verify that the server supports a given matching rule, attribute type, or object
class prior to performing an operation that depends on a certain characteristic. The output from the following
Idapsearch command shows the kind of information that is in the SubSchemaSubent ry tree. Since this tree
contains many entries, I've shortened it for convenience.

$ | dapsearch -D "cn=Manager, dc=pl ai nj oe, dc=or g"

> -w nOpass -x -s base -b "cn=SubSchema" \

> "(objectclass=*)" +

| dapSynt axes: (1.3.6.1.4.1.1466.115.121.1.26 DESC 'I A5 String')

mat chingRul es: (2.5.13.2 NAME 'casel gnoreMat ch' SYNTAX

1.3.6.1.4.1.1466.115.121.1.15)

attributeTypes: (0.9.2342.19200300.100.1.42 NAVE ('pager' 'pagerTel ephoneNunber')
EQUALITY tel ephoneNunber Mat ch SUBSTR t el ephoneNunber Subst ri ngsMat ch SYNTAX
1.3.6.1.4.1.1466.115.121.1.50)

obj ectCl asses: (2.5.6.6 NAME 'person’ SUP top STRUCTURAL MUST (sn $ cn) MAY
(userPassword $ tel ephoneNunber $ seeAlso $ description))

"_-‘ You can't modify the schema supported by an OpenLDAP directory server by modifying
i entries contained in the cn=SubSchena tree.
wh oA
ek

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

5.5 Creating Custom Schema Files for slapd

There are times when the standard schema files distributed with your LDAP server don‘t meet the needs of your
application. Creating a custom schema file for OpenLDAP is a simple process:

e Assign a unique OID for all new attribute types and object classes.
e Create the schema file and include it in slapd.conf.

It's also possible to create alternate schema syntaxes and matching rules, but implementing them is beyond the
scope of this book; typically, they require implementing a plug-in for the directory server or modifying the server's
source code. For more information on this process, you should consult the OpenLDAP source code or your vendor's
documentation for other directory servers.

Chapter 2 described how to obtain a private enterprise number from IANA (see the form at
http://www.iana.org/cgi-bin/enterprise.pl and RFC 3383). When creating new attributes or object classes, it is a
good idea to use an OID that is guaranteed to be unique, whether or not the schema will ever be used outside of
your organization. The best way to guarantee that the OID is unique is to obtain a private enterprise number and
place all your definitions under that number.

For example, suppose that an LDAP client application requires a new object class based on per son. This new
object class should contain all of the attributes possessed by the per son object, with the addition of the
user Passwor d and mai | attributes.

In order to create this new object, | have allocated the OID arc of 1.3.6.1.4.1.7165.1.1.1 for the new object
classes:

iso (1)
org (3)
dod (6)
internet (1)
private (4)
enterprise (1)
SAVBA. org (7165)
pl ai nj oe.org (1)
O Reilly LDAP Book(1)

The private enterprise number 7165 has been issued by IANA for use by the Samba developers, the 7165.1 arc
has been allocated to the plainjoe.org domain, and 7165.1.1 has been set aside for this book; I can't touch the
numbers above 7165.1 in the tree, but | have complete freedom to assign numbers below it as | see fit. I've
chosen to allocate 7165.1.1.1 to | dap object classes that I create and 7165.1.1.2 for new attributes. | could put
my new objects directly under plainjoe.org, but that might cause problems if I want to create other kinds of
objects (for example, private SNMP MIBs):

SAVBA. or g (7165)
pl ainjoe.org (1)
O Reilly LDAP Book(1)
| -- objectclasses (1)
| -- attributeTypes (2)

Let's call the new object pl ai nj oePer son. Add the following definition to a custom schema file named
plainjoe.schema; you'll use this file for all custom objects that you define.

objectclass definition for 'plainjoePerson' depends on core.schens.
objectclass (1.3.6.1.4.1.7165.1.1.1.1 NAME ' pl ai nj oePer son’

SUP person STRUCTURAL

MJUST (userPassword $ nmil))

LDAP's object inheritance allows this new object to reuse the existing characteristics of per son; you need to add

http://www.iana.org/cgi-bin/enterprise.pl

only the new required attributes. If new attributes are defined as well, they must be defined prior to their use in
thepl ai nj oePer son object. The new object has to be defined as STRUCTURAL since it is derived from a structural

class.

New attributes can be defined in the same way or even be derived from existing attributes. RFC 2252 should be
considered required reading in this case, as it describes the various LDAPv3 syntaxes and matching rules. For
example, you could create a new attribute named pl ai nj oePat h to store a single, case-sensitive pathname by

defining the following in plainjoe.schema:

Store a case-sensitive path to a directory.
attributetype(1.3.6.1.4.1.7165.1.1.2.1 NAME 'pl ainjoePath'
DESC ' A directory on disk'
SUBSTR caseExact | A5Subst ri ngsMat ch
EQUALITY caseExact | ASMat ch
SYNTAX 1.3.6.1.4.1.1466.115.121.1. 26 SI NGLE- VALUE)

' &+ General LDAPV3 schema syntax is described in RFC 2252,

_a Servers other than OpenLDAP may use a different schema syntax for representing object
o classes. You should refer to your directory server's vendor documentation for more details.

Finally, you need to add ani ncl ude line in slapd.conf for your new schema file:

lusr/ 1 ocal / et c/openl dap/ sl apd. conf
d obal section

| ncl ude the mni mum schena requi red.

i ncl ude /usr/local / etc/ openl dap/schema/ cor e. schema

** NEW *

| ncl ude support for special plainjoe objects.

i ncl ude /usr/l ocal / etc/ openl dap/ schena/ pl ai nj oe. schema

After restarting slapd, you can now add objects of the type pl ai nj oePer son or include the pl ai nj oePat h in

entries that use the ext ensi bl eObj ect class.

[Team LiB]

[Team LB] [<ereviovs)

5.6 SASL and OpenLDAP

The final section of this chapter explores how to replace the simple authentication used in your current directory
server with SASL mechanisms. You will be using the GSSAPI mechanism for Kerberos 5 authentication (RFCs 1510,
2743, and 2478). The examples assume that a Kerberos realm named PLAINJOE.ORG has already been
established and that a service principal named Idapadmin has been created. If you are unclear on the details of
Kerberos 5, a good place to start would be Kerberos: A Network Authentication System, by Brian Tung (Addison-
Wesley), or The Moron's Guide to Kerberos, located at http://www.isi.edu/gost/brian/security/kerberos. html.

So far, the r oot dn and r oot pwvalues used in slapd.conf have appeared similar to:

r oot dn "cn=Manager, dc=pl ai nj oe, dc=or g"
r oot pw {SSHA} 2aks| ai cAvwc +DhCr XUFI hgWsbBJ PLxy

In OpenLDAP 2.1, an SASL ID can be converted to a distinguished name and used for authentication or
authorization wherever a normal DN would be appropriate. This includes operations such as defining the updat edn
used for replication or the bi nddn used by a client in a search request. There's one important exception to this
rule: don't use an SASL ID as the DN of an entry in the directory. To summarize from Chapter 3, an SASL ID
converted to a DN appears as:

ui d=name[, r eal nereal m , cn=mechani sm cn=aut h

To illustrate how to use SASL as the authentication mechanism, we'll replace the r oot dn in our master server's

slapd.conf with the Kerberos 5 principal Idapadmin. Following the conversion algorithm just discussed, the new
r oot dn in slapd.conf will be:

New SASL- based rootdn
r oot dn "ui d=l dapadni n, cn=gssapi, cn=aut h"

Ther oot pwentry can be deleted because authentication for the new r oot dn will be done using the SASL GSSAPI
mechanism. The OpenLDAP server must possess a valid keytab file containing the key for decrypting tickets
transmitted with client requests.m Moreover, our tests will assume that the server is configured to use the default
realm of PLAINJOE.ORG.

[2] More information on generating keytab files can be found on the kadmin(8) manpage.

Once the configuration change has been made, restart slapd. You can then verify that the change has been made
correctly by using the Idapadd command to add an entry; the r oot dn is currently the only DN allowed to write to

the directory.
To run this test, create a file with an LDIF entry; we'll use the following LDIF entry, stored in /tmp/test.ldif:

Test user to verify that the new rootdn is K
dn: cn=test user,ou=people, dc=plai njoe, dc=org

cn: test user

sn: test

obj ectcl ass: person

To add this entry to the directory, invoke ldapadd with some additional arguments:

$ kinit | dapadm n@LA NJCE. ORG

Passwor d for |dapadm n@LAlI NJOE. ORG. password
$ klist

Ticket cache: FILE:/tnp/krb5cc_780

Def ault principal: |dapadm n@LA NJCE. ORG

Valid starting Expi res Servi ce principal
11/28/02 19:20:15 11/29/02 05:20: 15 krbt gt/ PLAI NJOE. ORG@LAI NJCE. ORG

$ I dapnodify -a -H |l dap:// master. pl ai njoe.org/ \

http://www.isi.edu/gost/brian/security/kerberos.html

> -f testuser.ldif

SASL/ GSSAPI aut henti cation started

SASL usernane: | dapadm n@-LAI NJCE. ORG

SASL SSF: 56

SASL installing layers

addi ng new entry "cn=t est user, ou=peopl e, dc=pl ai nj oe, dc=or g"

$ klist
Ticket cache: FILE:/tnp/krb5cc_780
Def ault principal: |dapadm n@LA NJCE. ORG

Valid starting Expi res Servi ce principal
11/28/02 19:20:15 11/29/02 05:20: 15 Kkrbt gt/ PLAI NJOE. CRG@LAI NJOE. ORG
11/28/02 19:23:34 11/29/02 05:20: 15 |dap/garion.plainjoe.org@-LA NJCE. ORG

If the server does not support the particular mechanism needed, GSSAPI in this case, authentication will fail. The -
Y option can be used to specify an SASL authentication mechanism rather than letting the client and server
attempt to negotiate a valid type that is supported by both. As seen earlier, the client can obtain a list of the
mechanisms that the server supports by querying the server's r oot DSE and viewing the values of the

support edSASLMechani snms attribute.

After becoming accustomed to SASL user IDs, you can incorporate them into the ACLs defined in slapd.conf.
Following the rule that an SASL ID can be used anywhere a DN is used to represent an authenticated user, SASL
IDs can follow the by keyword in an ACL definition. For example, the following definition allows the Kerberos
principaljerry to edit the mai | attribute for all users in the peopl e organizational unit:

access to dn=".*, K ou=peopl e, dc=pl ai njoe, dc=org" attrs=nai l
by "uid=jerry, cn=gssapi,cn=auth" write

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

Part Il: Application Integration

Chapter 6
Chapter 7
Chapter 8
Chapter 9

Chapter 10

[Team LiB] [« ereviovs)

[Team LB] [<ereviovs)

Chapter 6. Replacing NIS

One of LDAP's chief advantages is its ability to consolidate multiple directory services into one. This chapter
examines the pros and cons of using LDAP as a replacement for Sun's Network Information Service (NIS). NIS is
used primarily by Unix clients to centralize management of user information and passwords, hostnames and IP
addresses, automount maps (files that control the mounting of remote file systems), and other administrative
information. NIS clients for other operating systems, such as Windows NT 4.0, exist, though they aren't particularly
common.[11

[11 NIS was superseded by NIS+, which was never widely adopted. Describing how to replace NIS+ is beyond
the scope of this book.

While the focus of this chapter is using an LDAP directory as a replacement for NIS domains, many other tools are
used to distribute management information on Unix systems; for example, many sites use rsync(1l) to push
administrative files, such as /etc/passwd, to client machines. While this chapter assumes that you are replacing
NIS with an LDAP directory, adapting these techniques | present to other schemes for sharing the data in
/etc/passwd,/etc/hosts, and other key files should be straightforward:

e Get the information you want to share into the directory.
e Get your clients to use the directory.
e Disable your old information-sharing mechanism.

There are two fundamental strategies for replacing NIS with an LDAP directory. The first solution, illustrated in
Figure 6-1, involves setting up an NIS/LDAP gateway: i.e., an NIS server that accepts NIS queries, but answers
the queries by retrieving information from an LDAP directory. This strategy doesn't require any client modifications,
and therefore works with all NIS clients; it may be the easiest means of transitioning to a new LDAP-based
information service. Sun Microsystems Directory Server 4.x supports this approach. Sadly, newer releases (5.x) of
Sun's directory services product do not. An alternative solution is the NIS/LDAP gateway provided by a company
namedPADL Software (http://www.padl.com/). This gateway product is available for servers running Solaris,

Linux, FreeBSD, or AlX, and will be discussed later in this chapter.

Figure 6-1. NIS/LDAP gateway

NIS/LDAP gateway
Client server

BI5 requests
l and replies
= -

Directory
LDAP queries

i
'
'
'
'
i

[

The second solution involves making a complete transition to LDAP. If you are willing to disable NIS lookups on all
of your clients and install the necessary LDAP libraries and modules, you may prefer this approach. Clients access
information directly from an LDAP directory, eliminating the gateway. Many modern operating systems support
pluggable information retrieval modules; for example, Unix and Unix-like systems such as Solaris and Linux can
use the LDAP Pluggable Authentication Modules (PAM) and Name Server Switch (NSS) modules that have been
released by PADL Software under the GNU Lesser General Public License (LGPL).I;I If you are unfamiliar with PAM
and NSS, read the brief overview found in Appendix A.

[2] More information on the LGPL license can be found at http://www.fsf.org/licenses/licenses.html#LGPL.

To implement either solution—an NIS/LDAP gateway server or LDAP-enabled client lookups—we must define the
attribute types and object classes needed to move the information served by NIS (or saved in static system files)
into an LDAP directory.

[Team LB] [<ereviovs)

http://www.padl.com/
http://www.fsf.org/licenses/licenses.html#LGPL

[Team LB] [<ereviovs)

6.1 More About NIS

Before discussing these strategies for replacing NIS with LDAP, it's worth understanding something about the beast
we're trying to replace.m NIS is most commonly used to distribute system password and account maps (i.e.,
/etc/passwd and /etc/shadow) to client machines. It's also used to distribute the information from many other
system files, such as /etc/hosts,/etc/services,/etc/group, and /etc/networks. It can also distribute a number of

files that control the automatic mounting of remote file systems; and with the appropriate wizardry in sed and awk
or Perl, it can be coerced into distributing almost any kind of data that can be represented in a text file.

[31 This discussion is necessarily very brief. If you need more information about NIS, see Managing NFS and
NIS, by Hal Stern, Mike Eisler, and Ricardo Labiaga (O'Reilly).

In the NIS world, the master copy of any shared data resides on a master server, which distributes the data to
slave servers. Clients, which are organized into NIS domains (not to be confused with DNS domains), can then
access this information from any NIS server, master or slave, that services their domain. The NIS master acts as a
directory system agent (DSA) that provides information to clients, which use this information to perform tasks such
as authenticating users (i.e., the passwd map) and locating other hosts on the network (i.e., the hosts map).

The NIS information model is also characterized by a flat namespace. To use the passwd.byname map as an
example (this map represents the /etc/passwd file, indexed by username), there can be only one login name of
jerry. To work around this deficiency, NIS groups client machines into NIS domains, each with its own set of maps
(i.e., its own set of virtual administrative files). So, two users with the login name jerry can coexist if they can be
placed in different domains; for all practical purposes, different NIS domains are different directories (even though
they may be served by the same server).

In contrast, LDAP allows you to create a hierarchical namespace to manage these users. Let's assume that we'll
use the RDN of a node as its login name. LDAP can then maintain multiple users with the same login name if we
make sure that each user belongs to a different parent node (see Figure 6-2).

Figure 6-2. Comparing namespaces in NIS and LDAP

YRdommaln.com

Jey e] LDAP namespace)

de=plainjoe,dc=0rg

YRdomain.com

jerryRE

CmmmmmmEmsE e e m ..

f=salkes =Engr

id=jerry,
ou=5ales...

One basic rule of system administration is that users should not notice any loss of service when you implement
changes. A user does not need to be aware of where their account information is stored. It makes little difference
to them, as long as they can access necessary network services. If a change results in a downgrade of service for
users (no matter how big of a win for the system administrators), you'll almost certainly be forced to rip it out and
go back to the old system; eventually, you'll get tired of answering all the help desk calls. Fortunately, the
flexibility of the PAM and NSS interfaces can do a lot to insulate users from a change in information location.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

6.2 Schemas for Information Services

RFC 2307, "An Approach for Using LDAP as a Network Information Service," which has recently been updated in an
Internet-Draft by the LDAPbis working group, defines the attribute types and object classes needed to use an LDAP
directory as a replacement for NIS. Despite its experimental status, several vendors such as Sun, Apple, HP, SGI,
OpenLDAP, and PADL Software have developed products that support this schema.

RFC 2307 relates directly to information stored in standard NIS maps and how these maps should be viewed by
directory-enabled client applications. The list of attribute types and object classes is lengthy; for a complete
description of all that is available, refer to the RFC. | will use portions of the RFC 2307 schema in examples later in
this chapter. Before trying to implement these examples or experimenting with this schema on your own, consult
your directory server's documentation to find out the server's level of support for RFC 2307 and the exact syntax
you should use for working with RFC 2307 objects.

The first example shows how to migrate all user accounts and groups into your OpenLDAP server. While there is
nothing out of the ordinary about the configuration parameters with which you'll implement this solution, here's a
complete listing of the revised slapd.conf; note that two new schema files are included, nis.schema (the RFC 2307
schema) and cosine.schema (which defines items required by nis.schema):

sl apd. conf for inplenmenting an LDAP-based Network | nfornation Service

Standard OpenLDAP basic attribute types and object cl asses
i ncl ude lusr/ | ocal / et c/ openl dap/ schema/core. schema

cosine.schemn is a prerequesite of nis.schena.
i ncl ude lusr/ 1 ocal / et c/ openl dap/ schema/ cosi ne. schema

rfc2307 attribute types and object classes
i ncl ude /usr/ 1 ocal / et c/ openl dap/ schema/ni s. schema

M sc. configure options
pidfile /var/run/ sl apd. pi d
argsfile /usr/run/ sl apd. args
| ogl evel 256

SSL configure options

TLSCi pher Sui te 3DES: RC4: EXPORT40

TLSCertificateFile /usr/l ocal / et c/ openl dap/ sl apd-cert.pem
TLSCertificateKeyFile /usr/local/etc/openldap/slapd-private-key.pem

HHE M H A A R R A R R R
Define the beginning of exanpl e dat abase.

dat abase bdb

suf fix "dc=pl ai nj oe, dc=or g"

Define a root DN for superuser privileges.

r oot dn "cn=Manager, dc=pl ai nj oe, dc=or g"

r oot pw {SSHA} 2aks| ai cAvwc +DhCr XUFI hgWsbBJ PLxy
Directory containing the database files

directory /var /| dap/ pl ai nj oe. org

node 0600

Create the necessary indexes.
i ndex obj ect d ass eq

These indexes are included to support calls such as getpwuid(), getpwian(), and
getgrgid().
i ndex cn, uid eq

i ndex
i ndex

ui dNumber
gi dNunber

€q
€q

Figure 6-3 illustrates the relationships between the posi xAccount object class and a standard entry from a Unix
password file. There are two attributes, cn and descri pti on, that do not directly correspond to a field in the
/etc/passwd file. The RFC 2307 posi xAccount object is meant to represent a POSIX account, which doesn't map
exactly to the traditional Unix password file 141 Unix password files have the so-called GECOS field, which has
historically been used to store all sorts of information: the user's full name, office number, phone number, and
other things that are useful but not used directly by the operating system.@ The cn attribute ensures that the
user's full name (or common name) is present in a posi xAccount entry, and the descripti on attribute can be
used to store other supplementary information.

[4] The Portable Operating System Interface (POSIX) is a specification originally developed by the IEEE to
standardize operating system interface programmers. It has since been revised to include topics such as
shells, utilities, and system administration.

[5] For some interesting trivia behind GECOS (pronounced /jee' kohs/), refer to
http://www.jargon.net/jargonfile/g/GCOS. html.

Figure 6-3. Relationship between the posixAccount object class and passwd file entry

nbject lass posivAccount

gearter:kpP. s/mFobol 7é0:100: Gerald Carter: home/grartersbin/bash,

Required
[

Optianal

an:
uid:

widNumber:

gidMunber:
omeDirectory:

wserPasswaord

Qe

leginhell:
description:

Figure 6-4 illustrates a similar mapping between the posi x@ oup object class and an entry from the /etc/group
file, which NIS represents using the group.byname map.

Figure 6-4. Relationship between the posixGroup object class and group file entry

[Team LiB]

.
Bequived ahiributes
| I

Optianal attributes

objectilass:posinaroup

o

admin:*:101:gcarter

gidNumber:

userPassword:

memberllid
description

http://www.jargon.net/jargonfile/g/GCOS.html

[Team LB] [<ereviovs)

6.3 Information Migration

While some organizations may have the resources (such as undergraduate work study students) to re-enter the
data held in the NIS maps to the LDAP store, luckily, there are other means available. In addition to the PAM and
NSS LDAP reference modules available at PADL Software's web site, you'll also find a set of Perl scripts designed to
convert the various /etc system files (e.g., /etc/passwd and /etc/hosts) into LDIF format. Once you've converted
the system files to LDIF, you can import them into your LDAP store either online using the Idapadd(1) command or
by using an offline database creation utility such as the OpenLDAP slapadd(8c) tool. These LDAP migration scripts
can be found at http://www.padl.com/OSS/MigrationTools.html.

After unpacking the migration scripts, you must customize the migrate_common.ph script to fit your network
settings. Within this Perl script is a variable named $DEFAULT_BASE, which is used to define the base suffix under

which the organizational units that will serve as containers for migrated information will be created.

The scripts accept input and output filenames as command-line parameters. If no output filename is present, the
scripts write the converted entries to standard output. For example, the following command converts /etc/passwd
into an LDIF file:

root# mgrate_passwd.pl /etc/passwd /tnp/ passwd. | dif
Here's what a typical entry from /etc/passwd looks like after it has been translated:

dn: uid=gcarter, ou=peopl e, dc=pl ai nj oe, dc=org
uid: gcarter

cn: Cerald Carter

obj ectCl ass: account

obj ectCl ass: posixAccount

obj ectCl ass: top

obj ectCl ass: shadowAccount

user Password: {crypt}LnM)/ n2r@sR c
shadowLast Change: 11108

shadowvax: 99999

shadowwar ni ng: 7

shadowFl ag: 134539460

| ogi nShel | : /bin/bash

ui dNunber: 780

gi dNunber: 100

honmeDirectory: /home/gcarter

gecos: Cerald Carter

All the required fields (cn,ui d,ui dNunber ,gi dNunber , and honeDi r ect or y) defined in the RFC schema for a
posi xAccount are present. There are also a number of shadowfields (shadowLast Change, etc.; see the
shadowAccount object in Figure 6-5), which hold values related to password aging. These values are taken
automatically from the /etc/shadow file. If your system doesn't use shadow passwords, the shadowAccount object
class values may not be present.

Figure 6-5. Relationship between the shadowAccount object class and /Zetc/shadow file entry

objectClassshadowhceount |goarter :LnMl/n2rdsk.c: 112760099999 7 -1:-11 134540300

Requied artribne — | Uk:

userPasswond:
shadowlastlharge:
shadowMin:
)] shadowha:
Optional affributes | shadowWaming:
shadowinactive
shadowExpine
shadowFlag:
descripticn:

http://www.padl.com/OSS/MigrationTools.html

Different scripts exist to translate each system file into LDIF records. The information in each file is stored in a
different organzational unit directly beneath the base suffix (defined in migrate_common.ph) in the directory. Each
ou listed next is used by convention. The nss_Ildap library can be configured to pull information from other

locations, as we will see later. Currently, the migration scripts support translating:
e /etc/fstab (stored in ou=Mount s)
e /etc/hosts (stored in ou=Host s)
e /etc/passwd and /etc/shadow (stored in ou=Peopl €)
e /etc/group (stored in ou=G oup)
e /etc/protocols (stored in ou=Pr ot ocol s)
e /etc/rpc (stored in ou=Rpc)
e /etc/services (stored in ou=Servi ces)
e /etc/networks (stored in ou=Net wor ks)
e netgroups (stored in ou=Net gr oups)

In each case, the PADL migration scripts do not create the top-level organization unit for you. Make sure that these
exist prior to attempting to generate LDIF files in the directory. Since we are primarily dealing with users and
groups in this chapter, the following entries have already been added to the directory:

dn: ou=peopl e, dc=pl ai nj oe, dc=org
obj ectcl ass: organi zati onal Unit
ou: people

dn: ou=group, dc=pl ai nj oe, dc=org

obj ectcl ass: organi zati onal Unit
ou: group

[TeamLiB] [Crreviovs]

[Team LB] [<ereviovs)

6.4 The pam_Idap Module

Pluggable Authentication Modules (PAM) are implemented as shared libraries that distance applications from the
details of account data storage, mechanisms used to authenticate users, and service authorization processes. PADL
Software has developed a pam_Ildap module, supported on FreeBSD, HP-UX, Linux, Mac OS 10.2, and Solaris, as
part of a reference implementation for RFC 2307. This module allows you to take advantage of LDAP in PAM-aware
applications and operating systems. You can download the pam_Ildap source code from
http://www.padl.com/OSS/pam Idap.html. Most Linux distributions include PADL's pam_Ildap and nss_ldap
modules with the operating system. You should remove these packages first if you plan to build the latest version
from source.

installation are Sun's own creation and should not be confused with the modules discussed
in this chapter.

|! The pam_ldap and nss_ldap libraries included with Solaris as part of the operating system

Once you have obtained and extracted the pam_ldap source code, building the module is a familiar process:

$./configure
$ make
$ /bin/su -c "make install"

PADL's PAM and NSS libraries can make use of the Netscape LDAP SDK and the original University of Michigan
LDAP SDK, in addition to the OpenLDAP client libraries. The configure script attempts to determine which of these
packages is installed on the local system. If you need to inform the configure script which LDAP client libraries you
have installed and where, use the following configure options:

--with-1dap-1ib=type select I dap library [auto| netscape3|
net scape4| um ch| openl dap]
--with-ldap-dir=D R base directory of |dap SDK

6.4.1 Configuring /etc/ldap.conf

The pam_ldap module (and as we will see shortly, PADL's nss_ldap module) stores its configuration settings in a
text file. This file is named ldap.conf by default and is normally stored in the /etc directory. The configuration
parameters you can put in this file are summarized in Table 6-1,Table 6-2, and Table 6-3; the list is fairly small
and self-explanatory. We will begin customizing this file by exploring how a client locates the LDAP server and
authenticates itself.

Table 6-1. Idap.conf parameters shared by pam_Ildap and nss_ldap

http://www.padl.com/OSS/pam_ldap.html

Parameter

Description

host

The IP address (or hostname) of the LDAP server. The value must be resolvable without LDAP
support. If a host is not specified, the nss_Idap library will attempt to locate an LDAP server by
querying DNS for an SRV record for _ldap._tcp.<domain>. The current version of the pam_Ildap
module (v157) will not perform this auto-lookup, but support is planned for a future release. Also
refer to the uri parameter.

base

The base DN to use in searches.

| dap_version

The version of LDAP to use when querying the server. Legal values are 2 and 3. Version 3 is used
by default if it is supported by the client libraries.

bi nddn

The DN to use when binding to the LDAP server. This is an optional parameter; it is necessary
when access control on directory entries prohibits anonymous searches.

bi ndpw

The password used when binding to the LDAP server (if the bi nddn was defined).

port

The port to use when contacting the LDAP server. The default is port 389. Also refer to the uri
parameter.

r oot bi nddn

This parameter allows you to map the effective UID O (i.e., the root UID) to a DN that is used to
bind to the LDAP server. If enabled, the password for this DN is read from /etc/Idap.secret. This
follows the convention that the root account should be able to access all information on the
system.

ssl|

This parameter defines the behavior of the PAM and NSS modules for negotiating SSL when
binding to the server. By default, SSL is not used. The client can be configured to use LDAPS by
setting this parameter to on, or to use the StartTLS Extended command by setting this parameter
tostart _tls.

scope

The scope to use when searching the LDAP tree. The possible values are sub,one, and base.

uri

This option accepts an LDAP URI defining the host and port of the directory server.

Table 6-2. pam_ldap ldap.conf parameters

Parameter

Description

pam check_host_attr

A Boolean parameter (defaults to no) that controls checking of the host attribute when
authorizing a login.

pam filter

A string that provides additional filter elements that are ANDed with (Ui d=%s) when
attempting to validate a user. See the pam | ogi n_at t ri but e parameter for related
information.

pam | ogi n_attri bute

The attribute that should be matched against the user's login name. This parameter lets
you use something other than a simple username for authentication—for example, an
email address.

pam | ookup_policy

A Boolean parameter (yes or no) that tells pam_Ildap whether to contact the root DSE
to get the server's password policy. For use with Netscape's directory server 3.x only.

pam _groupdn

Defines the DN of a group whose membership (see the pam nenber_attri bute
parameter) should be used to to restrict access to the local host.

pam nmenber_attri bute

Defines the group membership attribute.

pam mn_uid

pam nmax_uid

These two parameters accept an integer representing the minimum and maximun
ui dNunber values allowed to log in. The default is to place no restrictions on logins.

pam passwor d

This parameter defines various methods for changing passwords on LDAP servers. It
supersedes the older pam _crypt ,pam nds_passwd, and pam ad_passwd parameters.
Possible values include: cl ear (the default; sends the clear text of the password to the
server),crypt (hashes the password locally using the standard crypt () function
before sending the change to the server), md5 (generates the MD5 hash of the
password locally before sending it to the server), nds,r acf (provides support for
changing passwords stored in a Novell Directory Server), ad (provides support for
changing passwords stored in an Active Directory server), and exop (supports the
Password Modify extended operation defined in RFC 3062; implemented by OpenLDAP).

Table 6-3. nss_ldap lIdap.conf parameters

Parameter Description
nss_base shadow

nss_base_passwd
nss_base_group

nss_base_hosts

These parameters allow the naming contexts for various databases in nsswitch.conf to be

nss_base_services i . .
- - configured as per the recommendations from the RFC 2307 updates. The syntax is:

nss_base_ net wor ks .
- - nss_base XXX base?scope?filter

n r I)] . .
ss_base_protocols Thef il t er is combined with the default filter for the object being requested using a

logical AND (&). These parameters are available only when nss_ldap has been configured

nss_base_rpc) . L
- - to use the —enable-rfc2307bis option at compile time.

nss_base_et hers
nss_base net nasks
nss_base_al i ases

nss_base_net group

These parameters provide a means of mapping attributes and object classes returned

nss_map_attri bute) ;])
from the directory server to an RFC 2307-equivalent schema item. The syntax is:

nss_map_obj ectcl ass . .
—Tep_ob] nss_map_XX rfc2307item mapped_item

In order for the pam_Ildap module to offer any help, it must be able to locate the directory server it will query for
information. There are two ways that the module can locate the directory server. The sole method supported by
pam_ldap is to explicitly specify the LDAP server using the host or uri parameters in Idap.conf. The alternative,
utilized only by the nss_lIdap library, is to omit the host parameter and create a DNS SRV record that maps the
hostname_Idap._tcp.<domain> to an IP address. If no host is specified in Idap.conf, the nss_Ildap library tries to
look up a server with this special hostname and uses that server at that address for queries. If you have multiple
servers, you can configure round-robin load sharing with either approach.

The following parameters instruct pam_Idap to contact the host Idap.plainjoe.org on the default port 389 for all
LDAPv3 queries:

Your LDAP server. Mist be resol vabl e w thout using LDAP.
uri | dap: / /| dap. pl ai njoe. or g/

Set the version nunber for LDAP commands. The default is to use Version 3 if
supported by the client libraries.
| dap_version 3

Next, you must define the search parameters for pam_Idap to use when querying the directory. These options
correspond to the standard Idapsearch command-line options. The following fragment of Idap.conf defines the
search base, the search scope, and a maximum time limit:

Define the search base
base dc=pl ai nj oe, dc=or g

Define the scope of the search [sub| base|one]. A subtree search is the default.
scope sub

Set a tinme limt in seconds to wait on a search.
timelimt 30

The DN of the user's entry must be located in order to bind to the directory on behalf of the user and thus perform

the requested authentication. This search can be done either anonymously or by using a predefined bi nddn and
bi ndpw. The bi ndpwstring must be stored in Idap.conf as clear text, which always makes me nervous. Therefore,
my preference is for the first option. Because anonymous searches are implied by the absence of a specified

bi nddn, no additional Idap.conf parameters are required.

Finally, add a few parameters to fine-tune the search filter. pam_| ogi n_at t ri but e defines which attribute should
be matched to the login name entered by the user. pam fil t er allows an administrator to further refine the
search filter when attempting to locate a user account. In the following configuration file entries, it is specified that
the user's login name should be matched against the UID attribute defined in the posi xAccount object class.
(Note that a UID in this schema is a login name, not a number, as in common Unix usage.)

Define the user login name attribute (defaults to uid).
pam | ogi n_attribute uid

The following filter will be used to AND with <pam |ogin_attri bute>=%.
pam filter objectcl ass=posi xAccount

With these two settings, the pam_Idap library makes the following search to verify that a user account named
"carter"” is in the directory:

(& object d ass=posi xAccount) (ui d=gcarter))

After verifying the existence of the DN, the PAM module attempts to bind to the directory using the located DN and
the password entered by the user. If this bind succeeds, pam_ldap informs the calling application that the user has
been successfully authenticated.

[Team B] [<ereviovs)

[Team LB] [<ereviovs)

6.5 The nss_ldap Module

TheName Service Switch (NSS) is similar to PAM except that it only provides a mechanism for information
retrieval.PADL Software's nss_ldap module can be obtained from http://www.padl.com/OSS/nss_Idap.html. The
current implementation can be used on AlX, HP-UX, Linux, and Solaris. Although the pam_ldap module supports
FreeBSD and Mac OS 10.2, the nss_ldap library does not. This means that you will not be able to apply the
complete solution outlined in this chapter to those platforms.

Compiling PADL's nss_ldap module is almost the same as compiling pam_Ildap. The same options are available to
theconfigure script (for explicitly defining the LDAP libraries to be used and their locations). The one additional
compile-time setting that you will use is -enable-rfc2307bis. This change optimizes the search parameters for each
nsswitch.conf database by using the nss_base * parmeters. Otherwise, nss_ldap would query for entries by
performing a subtree search beginning at the base (from /etc/Idap.conf). The familiar three-step:

$./configure --enable-rfc2307bis
$ meke
$ /bin/su -c "nmake install"

installs an appropriately named version of the nss_ldap library in /lib. For example, the resulting file would be
/lib/libnss_ldap.so on a Linux host and /lib/nss_ldap.so on a Solaris box. Since the examples in this chapter are
based on Linux systems, whenever there is a need to refer to the actual nss_ldap library file, I will use the
libnss_ldap.so filename.

The nss_ldap module uses the same /etc/ldap.conf configuration file as PADL's pam_ldap module. The
configuration parameters for this module are summarized in Table 6-3. While both pam_ldap and nss_Idap read
/etc/ldap.conf for configuration settings, the parameters prefixed by pam_ do not affect the behavior of nss_Idap.

The/etc/ldap.conf file must be readable by any process that performs any of the various get XbyY() function

calls such as get pwnan(j erry) or get gr gi d(0) . For example, if you have specified a host to which all LDAP
queries should be directed, but the user's process is unable to obtain that parameter setting because it cannot read
Idap.conf, you will begin to notice DNS SRV queries for _| dap. _t cp.domai n as the nss_ldap library attempts to
locate an LDAP server. However, if you make the Idap.conf file world-readable, think twice about putting a bi nddn
andbi ndpwin the file.

To configure a service to use the nss_ldap module, add the keyword | dap to the appropriate lines in your
/etc/nsswitch.conf file. PADL's NSS module currently supports the following databases:

passwd
group
hosts
services
networks
protocols
rpc

ethers
netgroups

The following databases are currently unsupported:

netmasks
bootparams
publickey
automount

Mount point lookups using LDAP queries are supported directly by some automount agents, such as Sun's
automounter (included with current Solaris releases) and Linux's autofs. This will be covered later in the chapter.

Here's an excerpt from an nsswitch.conf file. It specifies that the system should consult the local password, shadow
password, and group files before querying the directory server.

http://www.padl.com/OSS/nss_ldap.html

Define the order of |ookups for users and groups.

passwd: files | dap
shadow. files | dap
group: files | dap

Because your directory stores groups in one ou and user accounts in another, you can help reduce the load on your
LDAP server by customizing the searches used by nss_ldap. Table 6-3 listed several nss_base_ XXX parameters.
You will use only the three that correspond to the nsswitch.confl dap entries just listed. Each search needs to be
only a one-level search since all relevant entries are stored directly below the corresponding ou (e.g., ou=peopl e
andou=gr oup).

Optim ze the nss_ldap searches for these databases.
nss_base_passwd ou=peopl e, dc=pl ai nj oe, dc=or g?one
nss_base_shadow ou=peopl e, dc=pl ai nj oe, dc=or g?one
nss_base_group ou=gr oup, dc=pl ai nj oe, dc=org?one

If all has gone well up to this point (user and group account information has been entered into the LDAP directory,
andlibnss_ldap.so has been installed and configured), the following command should list the accounts in
/etc/passwd first, followed by any posi xAccount objects in the directory:

$ getent passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:

<. . . output deleted . . . >

gcarter:x:780:100: G Carter:/hone/ queso/gcarter:/bin/bash
jerry:x:782:782: Jerry Carter:/home/ queso/jerry:/bin/bash

The last two lines of output were retrieved from the LDAP server. The "x" in the password field is due to the
presence of the shadowAccount object class, as shown in this LDIF listing of the account information for gcar t er :

dn: uid=gcarter, ou=Peopl e, dc=pl ai nj oe, dc=org
uid: gcarter

cn: Gerald (Jerry) Carter

obj ectCl ass: account

obj ectCl ass: posi xAccount

obj ectCl ass: top

obj ectCl ass: shadowAccount

| ogi nShel | : /bin/bash

ui dNunber: 780

gi dNunber: 100

homeDirectory: /home/queso/ gcarter
user Passwor d: {crypt}GoYLwzMD6cuZE

If the shadowAccount object class wasn't present, the nss_ldap module would have filled in the second field of the
output from getent with the password hash (assuming this attribute was returned from the directory server).

If no posi xAccount entries are returned by the getent command, then verify that the nss_ldap library was
installed correctly, that it has the read and execute permissions set for everyone (chmodo+rx
/lib/libnss_ldap.so*), and that /etc/ldap.conf is readable by all users (chmodo-+r/etc/ldap.conf). If all of these
appear to be correct, also verify that the information can be retrieved from the directory using Idapsearch.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

6.6 OpenSSH, PAM, and NSS

Once the pam_Ildap and nss_ldap shared libraries have been installed and /etc/ldap.conf has been configured, you
can configure individual services to use the new PAM module. We'll start with the SSH daemon, sshd. Here's how
to set up OpenSSH (http://www.openssh.com/) on a Linux system, which uses a separate PAM configuration file
per service. (Note that other systems may use a single PAM file for all services; for example, Solaris uses
/etc/pam.conf.) Make sure that PAM is enabled when you compile the sshd daemon; otherwise, you will be wasting
your time.

The following /etc/pam.d/sshd configuration file defines the pam_Idap library to be used for authentication (aut h)
and account management (account). The account management library checks for password aging according to the
attribute types defined for the shadowAccount object class and verifies any host-based access rules (covered in
the next section). The sessi on module type is ignored by the pam_ldap library. While user password changes are
supported by the pam_ldap library, these are not relevent to this example.

| etc/ pam d/sshd
PAM configuration file for OpenSSH server

aut h required /1ib/security/ pamnologin.so
aut h sufficient /1ibl/security/ pam.| dap. so
aut h required /1ibl/security/ pamunix.so shadow null ok use_first_pass

account sufficient /1ibl/security/ pam.l| dap. so

account required /1iblsecurity/ pamunix. so

password required /1ibl/security/ pamcracklib. so

password required /1ib/security/ pamunix.so nullok use aut htok shadow
sessi on required /1iblsecurity/ pamunix. so

sessi on optional /1ibl/security/ pamconsole.so

The use of the suf f i ci ent control flag for the aut h and account service types indicates that authentication by
this module alone is enough to return success to the invoking application. The use_fir st _pass argument is
necessary so that the user is not prompted for an additional password if authentication falls through to the
pam_unix.so library.

You will have to create a similar configuration file for every other service for which you want to control access.

While configuring sshd to use PAM for authentication requires some configuration, nothing needs to be done to
makesshd use the nss_Ildap library. The retrieval of information from the various databases listed in
/etc/nsswitch.conf is handled by the system's standard C library; once you've set up nsswitch.conf, you're done.
The client application only needs to call the basicget . . . () function, such as get pwnan(), to obtain the
available information.

[TeamLiB1] [Crreviovs]

http://www.openssh.com/

[Team LB] [<ereviovs)

6.7 Authorization Through PAM

Once a user has been authenticated, the account management features of the pam_ldap module provide two
means of restricting access to a host, independent of any other PAM modules you may have specified in the
configuration file (e.g., the pam_nologin module). Which method you choose depends on whether you wish to bind
a host to a group of users or bind a user to a group of hosts.

6.7.1 One Host and a Group of Users

The first authorization method, in which you specify a group of users who are allowed to use a particular host, ties
into other information you have already migrated into the directory. The host entry for a machine (generated from
/etc/hosts by the PADL migration scripts) can be extended to include a list of DNs for users (nmenber) that are
authorized to log on using pam_Ildap. The following LDIF example shows how you can use the ext ensi bl eObj ect
class to associate a group of users with a host entry:

dn: cn=pogo, ou=host s, dc=pl ai nj oe, dc=or g

obj ectCl ass: i pHost

obj ectCl ass: device

obj ectCl ass: extensi bl eObj ect

i pHost Number: 192.168. 1. 75

cn: pogo. pl ai njoe.org

cn: pogo

menber: uid=gcarter, ou=peopl e, dc=pl ai nj oe, dc=org
menber: uid=kristi, ou=peopl e, dc=pl ai nj oe, dc=org
menber: uid=deryck, ou=peopl e, dc=pl ai nj oe, dc=or g

In order to configure pam_ldap to honor this group membership, the following two lines must be added to
/etc/Idap.conf:

Define the DN of the entry to contain the groupd Uni queNanes.
pam_groupdn cn=pogo, ou=hosts, dc=pl ai nj oe, dc=org

Define the attribute type that shoul d be used in the attenpt to match the user's
DN.
pam nmenber_attri bute menmber

For OpenSSH, this configuration means that only those users whose DN is listed as one of the values for the
menber attribute will be allowed ssh access to your host.

6.7.2 One User and a Group of Hosts

You can also specify the machines that any given user is allowed to access. To implement this control mechanism,
the structural account object class listed in the cosine.schema file must be present in the list of object classes for
an entry. This is done for you by the PADL migration scripts. Figure 6-6 shows that the account object class
requires only one attribute. This attribute, ui d, is already required by the posi xAccount object class and is
therefore guaranteed to be present.

Figure 6-6. Schema for the account object class

objectClass:account

Reguived attribete — | ui:
description:
Incalitybame:
Optional attributes :::eehlm

i

herst:

While several optional attribute types are available with the addition of this new object class, only the host

attribute is of use to pam_Idap. The following LDIF listing shows how the account object class can be used to
control access:

dn: uid=gcarter, ou=Peopl e, dc=pl ai nj oe, dc=org
uid: gcarter

cn: Gerald (Jerry) Carter

obj ectCl ass: account

obj ectCl ass: posixAccount

obj ect Cl ass: shadowAccount

| ogi nShel |I: /bi n/bash

ui dNunber: 780

gi dNunber: 100

homeDirectory: /honme/queso/ gcarter
user Passwor d: {crypt}GoYLwzMD6cuZE
host: queso. plai njoe.org

host: pogo. pl ai njoe. org

host: tummus. pl ai nj oe. org

This listing shows that the user gcarter is allowed to access the hosts queso,pogo, and tumnus. To enable
pam_ldap's host-checking functionality, you must enable the pam check_host_attr parameter in Idap.conf:

Enabl e host attribute | ookups.
pam check_host_attr yes

If the list of hosts does not contain the hostname of the system that the user wants to access, he is denied access.
If the host list is empty (i.e., no host attribute is present), the user is denied access by default.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

6.8 Netgroups

Netgroups have become a daily staple for NIS administrators. They allow machines and/or users to be collected
together for various administrative tasks such as grouping machines together for use in the tcp_wrappers files
/etc/hosts.allow and /etc/hosts.deny. In this next example, you restrict access via ssh only to members of the
sysadmin netgroup:

[etc/ hosts. deny
sshd: ALL

[etc/hosts. all ow
sshd: @ysadmin

Netgroups can be composed solely of individual hosts:

sysadmn (garion.plainjoe.org,-,-)(silk.plainjoe.org,-,-)
or other netgroups:

all _sysadmn sysadm n secure_clients

or of any combination of the two.

RFC 2307 describes the structural ni sNet gr oup object class (Figure 6-7), which can be used to represent
netgroups as directory entries. The cn attribute holds the name of the netgroup, the ni sNet gr oupTripl e
attribute stores the (host, user, NIS-domain) entries, and the menber Ni sNet gr oup attribute stores the names of
any nested netgroups.

Figure 6-7. nisNetgroup object classes

objectClass:nsNetgroup

FReguired artribute — | 0

nisMetgroupTriphe
Opticnal artritwres | membesNiskietgroup:

description:

Before adding any netgroup entries to the directory, you must create the container ou. By convention, | will use
theou=net gr oup organizational unit for storing netgroups in this example:

dn: ou=netgroup, dc=pl ai nj oe, dc=org
obj ectcl ass: organi zati onal Unit
ou: netgroup

After passing through PADL's migrate_netgroup.pl tool, the sysadmin netgroup will be represented by this LDIF
entry:

$./ mgrate_netgroup.pl /etc/netgroup

dn: cn=sysadni n, ou=net gr oup, dc=pl ai nj oe, dc=or g
obj ectCl ass: ni sNet group

obj ectCl ass: top

cn: sysadmn

ni sNetgroupTriple: (garion.plainjoe.org,-,-)

ni sNetgroupTriple: (silk.plainjoe.org,-,-)

Theall_sysadmin netgroup contains the sysadmin and the secure_clients netgroups, so it will use the
menber Ni sNet group attribute:

dn: cn=al | _sysadm n, ou=net gr oup, dc=pl ai nj oe, dc=org
obj ectCl ass: ni sNet group

obj ectCl ass: top

cn: all _hosts

menber Ni sNet group: sysadm n
menber Ni sNet group: secure_clients

After adding these entries to your directory, you must configure the nss_base_net group parameter in
/etc/ldap.conf to use the correct search suffix:

[etc/ | dap. conf

<remaini ng paraneters imtted>

Configure the search paraneters for netgroups.
nss_base_net group ou=net group, dc=pl ai nj oe, dc=or g?one

Finally, you must inform the the operating system to pass off netgroup queries to the LDAP directory by updating
thenetgroup entry in /etc/nsswitch.conf:

[etc/ nssw tch. conf
#t ..
net gr oup: | dap

Thegetent tool can be used to query NSS for specific netgroups by giving the group name as a command-line
parameter:

$ getent netgroup sysadmn
sysadm n (garion.plainjoe.org,-,-)(silk.plainoe.org,-,-)

It would also be a good idea to verify that the /etc/hosts.allow listed in the beginning of the section obeyed the
netgroups membership by actually attempting to log on to the machine using ssh from a host other than garion or
silk.

There are many services that can use netgroups. The tcp_wrappers security package is only one example. Another
frequent use of netgroups is to utilize them to restrict access to exported NFS file systems (refer to the exports(5)
manpage). Any place where these administrative groups were used in your NIS domain should remain valid for
these new nss_ldap-enabled systems.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

6.9 Security

Up to this point, we haven't discussed security. You've put a lot of sensitive information into your directory, which
is now controlling whether users can log into machines on your network. And you could certainly put a lot more
information into the directory: telephone numbers, human resources information, etc. Some of this information
might be genuinely useful to the public at large; some of it may be highly confidential. But you don't yet know how
to keep users from accessing information they shouldn't have access to. In order to have any confidence in a
solution, we must examine how certain security issues are addressed by both the PAM and NSS modules.

First, it is important to understand what level of security is desired and exactly what information is being
protected. Are you concerned only with protecting passwords? What about usernames as well? From the
perspective of system administration, the most important information to protect is related to user and group
accounts. Few sysadmins worry about someone being able to snoop a hosts file as it is copied across the network
from one machine to another. However, everyone should be concerned about using a clear-text protocol, such as
FTP, to transfer /etc/passwd and /etc/shadow from one machine to another.

Toprotect user passwords, we must look at how the PAM module binds to the directory. pam_Ildap always uses a
simple bind to authenticate a user against an LDAP server. You should avoid sending account credentials across the
network in a form that is readable by anyone viewing traffic.

LDAPv3 provides two mechanisms that can be used to protect passwords. One is to use SASL to support more
secure methods of authentication such as Kerberos 5 or DIGEST-MD5. However, while this mechanism protects
passwords, it doesn't necessarily protect information other than the user's password. It is not supported by
pam_ldap at this time. The second solution is to negotiate a secure transport layer that will protect the information
used in the LDAP bind request as well as all other information sent to and from the directory server.

Security must be implemented by both the server and the client. It makes no difference if one party is willing to
communicate securely but the other is not. Recall the StartTLS-extended command added in RFC 2830. This
command allows the client to request a secure transport layer prior to binding to an LDAP server. Both the
pam_ldap and nss_ldap modules support using the StartTLS command to negotiate transport layer security. In
addition, these modules also support the LDAPS (tcp/636) protocol, which is an older method for accessing an
LDAP server securely.

The following Idap.conf directive instructs the PADL LDAP modules to issue a StartTLS command prior to binding to
the server:

Use the StartTLS conmand to negoti ate an encrypted transport |ayer. A val ue of
on defines the use of LDAPS when connecting to the directory server.
ssl start _tls

Once you have configured the client, use a tool such as Ethereal or tcpdump to view the network traffic; it's a good
idea to verify that things are working as expected.m After the initial LDAP Extended Request (i.e., StartTLS), you
should see no clear-text traffic between the client and server. It is easy to spot an LDAP simple bind. The following
is a bind request using the DN "ui d=gcart er, ou=peopl e, dc=pl ai nj oe, dc=or g" and the password t esti ng:

[6] More information on Ethereal can be found at http://www.ethereal.com/. News regarding tcpdump can be
found at http://www.tcpdump.org/.

00 30 f1 11 98 da 00 00 f4 d8 6¢c 0d 08 00 45 00 O T R =
00 71 b9 a2 40 00 40 06 fd 21 cO a8 01 4a cO a8 g..@@.!...J..
01 28 a3 2f 01 85 26 8e 13 41 30 62 21 3a 80 18 (1 & CADD! L
19 20 51 ef 00 00 01 01 08 Oa 16 aa ab 72 16 ab QL r..
09 2f 30 3b 02 01 03 60 36 02 01 03 04 28 75 69 N R]

64 3d 67 63 61 72 74 65 72 2c 6f 75 3d 70 65 6f d=gcarter, ou=peo
70 6¢c 65 2c 64 63 3d 70 6¢c 61 69 6e 6a 6f 65 2cC pl e, dc=pl ai nj oe,
64 63 3d 6f 72 67 80 07 74 65 73 74 69 6e 67 dc=org. .testing

When the StartTLS command is working correctly, you will be able to notice the initial extended (OID
1.3.6.1.4.1.1466.20037) request and the downloading of the server's certificate, but the remainder of the
conversation will appear as gibberish (technically speaking).

http://www.ethereal.com/
http://www.tcpdump.org/

Of course, encrypting all of the traffic between the clients and servers does no good if an unauthorized user can
obtain information using normal means such as Idapsearch. To prevent access to information that could
compromise an account (e.g., the user Passwor d attribute), you must specify access controls that secure account
information. The following two access control entries (ACEs) in the database section of slapd.confprevent users
from viewing passwords belonging to accounts other than their own:

Users can change their own passwords. Ot her users can attenpt to authenticate, but
can't read the userPassword val ue.
access to dn=".*, dc=pl ai nj oe,dc=or g" attr=user Password

by self wite

by * auth

Default to read access.
access to dn=".*, dc=pl ai nj oe, dc=or g"
by * read

It's worth looking at these ACEs in some detail to understand exactly what they say. The first ACE allows a user
who has been authenticated by the directory to have write access to his password (sel f wri t e). Write access

implicitly includes read access, and is necessary to allow users to change their passwords. Other users are granted
only the ability to authenticate against the given DN (* aut h). This is not the same as read access because the
client can never obtain the user Passwor d value. The server compares the password sent by the client in the bind
request to the value stored in the directory entry; the password never leaves the server.

The second ACE grants read access to all directory information to all users. Unless you have configured a more
privileged account for use by nss_ldap (bi nddn and bi ndpw), you must allow anonymous read access to clients
using an anonymous bind. However, note that the clients can't obtain the user Passwor d attribute; the previous

ACE blocks access to passwords other than their own.

Remember that access control entries follow the "first match wins" rule. Therefore, the more restrictive ACEs must
be defined first. In this example, reversing the order of the ACEs has an ill effect: every read request will match
the rule allowing anonymous reads, and the rule restricting access to passwords is never processed.

If you have configured a bi nddn (ui d=nssl dap, ou=peopl e, dc=pl ai nj oe, dc=or g) for searching the directory,
the last ACE can be changed to disallow anonymous reads altogether:

Default to read access.

access to dn=".*, dc=pl ai nj oe, dc=org"
by dn="ui d=nssl dap, ou=peopl e, dc=pl ai nj oe, dc=or g" read
by * none

[Team LiB] EEEENES | EE

[Team LB] [<ereviovs)

6.10 Automount Maps

In order to use the automount information stored in your directory, you must shift your focus to the automount
daemon itself, specifically Linux's kernel-based autofs. As it currently stands, autofs (v3.1.7 and the 4.0 preview
releases) supports the undocumented aut onount and aut onount Map object classes. However, Red Hat has
updated the package in its distribution (autofs-3.1.7-28) to look up mount points based on the ni sObj ect and
ni sMap classes described in RFC 2307 (and included in nis.schema). The LDAPbis workgroup's revisions to RFC
2307 will include new schema items for storing automount information, but for the moment, ni sObj ect and

ni sMap have the largest support base from Red Hat, Sun, and PADL. Figure 6-8 shows the required and optional
attributes for these two new object classes.

Figure 6-8. nisObject and nisMap object classes

objectllassnisihject

Faquived aftribute — [
nisMapEntry:
nisMaphame:

Optional mitribute — | description:

objectilassnisMap

Recuived attrifte — | nisMaphlare:

Optional attribute — | description:

"_-‘~ Red Hat's automount patches can be obtained from either
as http://people.redhat.com/nalin/autofs/ or in the latest autofs SRPM at
. &= ftp://ftp.redhat.com/pub/redhat/linux/rawhide/SRPMS/SRPMS/.

PADL's migration tools include a script (migrate_automount.pl) for converting an automount map to LDIF. Here,
you will convert a single automount point in /opt to a directory entry. You can see from the /etc/auto.opt excerpt
that the LDIF entry contains all of the information needed for mounting /opt/src. This time, PADL's script does
create the top-level container (ni sMapName=auto. opt) for you:

$ grep src /etc/auto.opt
src -rw, hard, intr queso. plai njoe. org:/export/ul/src

$./ mgrate_automount.pl /etc/auto.opt /tnp/auto.opt.ldif

$ cat /tnp/auto.opt.|ldif

dn: nisMapNane=aut 0. opt, dc=pl ai nj oe, dc=org
obj ectCl ass: top

obj ectCl ass: ni sMap

ni sMapNane: aut o. opt

dn: cn=src, ni sMapNane=aut 0. opt, dc=pl ai nj oe, dc=or g

obj ectCl ass: ni sChj ect

cn: src

nisMapEntry: -rw, hard,intr queso. pl ai njoe.org:/export/ul/src
ni sMapNane: aut 0. opt

After adding the new automount entries to the directory using Idapadd, the autofs server must be informed of
auto.opt's map location, the LDAP server's hostname, and the search base. The following line in /etc/auto. master
instructs the autofs package to look up mounts for /opt on the host Idapl beneath

ou=auto. opt, dc=pl ai nj oe, dc=org:

Look up rmounts for /opt in the LDAP directory.

http://people.redhat.com/nalin/autofs/

/opt |ldap:|dapl: ni sMapNane=aut 0. opt, dc=pl ai nj oe, dc=org --tinmeout 300

Now you can launch the automount daemon; it will obtain all information for mount points in /opt from the
directory server. If you're curious about what's going on, I recommend viewing the slapd log file on your server for

more information on the autofs LDAP queries.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

6.11 PADL's NIS/LDAP Gateway

If configuring all your Unix clients to use PAM and installing the various NSS modules is a little more work than
your IT shop can bear at the moment, you may prefer the NIS/LDAP gateway solution mentioned at the beginning
of this chapter (refer to Figure 6-1 for an illustration). This section examines PADL Software's ypldapd daemon as a
migration path from NIS- to directory-based information storage. The following excerpt from the ypldapd(8)
manpage describes ypldapd's position within a network:

YPLDAP(8)

ypldapd emulates the equivalent process ypserv by providing an RPC call-compatible interface. Rather than
consulting ~map’ files as ypserv does, however, ypldapd draws its data from LDAP databases.

In theory, ypldapd allows an NIS domain to be replaced with a directory-based solution without any client
machines being aware of the change. Even non-Unix NIS clients, such as the Windows NT NISgina DLL, will
function correctly. As far as NIS clients are concerned, nothing has changed: they still get their data using the NIS
protocol from an NIS server. Where the server gets its data from is another matter.

Theypldapd package is available in binary form for Solaris, Linux, FreeBSD, and AlX, and can be downloaded with
a 30-day evaluation license. PADL's web site provides instructions for obtaining a temporary license via an email
request. The user's guide is also available online in either Postscript or MS Word format
(http://www.padl.com/Products/NISLDAPGateway.html).

Configuringypldapd is fairly easy. Because it supports the RFC 2307 information service schema, you can use the
PADL migration tools described earlier in this chapter to populate the directory with host and user information.
PADL includes a copy of its migration tools with the ypldapd distribution. However, you may want to download the
latest version separately.

PADL provides installation scripts for ypldapd that can be executed after unpacking the tar archive in /opt/ypldapd.
Before beginning the installation, you should have or know:

A license key for ypldapd

The hostname of the LDAP server to query

The base DN used for searches

The NIS domain name of the ypldapd server

These settings will be stored in /opt/ypldapd/etc/ypldapd.conf. You can use ypldapd's-c option to specify an
alternative configuration file. All other configuration files must be located in /opt/ypldapd/etc/. Here's an initial
ypldapd.conf:

NS domain to serve
ypdomai n yp. plai njoe.org

LDAP server
| daphost 192.168.1.77

Search base
basedn dc=pl ai nj oe, dc=or g

Enabl e cachi ng.
cachi ng on

Dunp caches every half hour.
cache_dunp_i nterval 30

Use the default nam ng context mappings.

http://www.padl.com/Products/NISLDAPGateway.html

nam ngcontexts nam ngcontexts. conf

All of the parameters are fairly self-explanatory. Refer to the ypldapd(8) manpage and the ypldapd user's manual
for complete information on the directives you can use in the configuration file.

Depending on how you have configured access control for the entries in your directory, you may need to assign
ypldapd a privileged DN to use when it binds to the LDAP server, as it needs to view all user information (i.e., the
user Passwor d attribute value). Otherwise, ypldapd uses an anonymous bind, and may therefore be unable to
access certain attributes or entries. Here's how to set up a privileged DN:

Define a DN used for binding to the LDAP server.
bi nddn ui d=ypl dappr oxy, ou=peopl e, dc=pl ai nj oe, dc=or g

I ncl ude the clear-text password for the binddn.
bindcred secr et

This configuration assumes that a user named ypldapproxy exists in the directory, and that the following access
control rule is defined in slapd.conf. Because of OpenLDAP's "first match wins" algorithm for processing access
control rules, this definition should be listed before any others.

G ve the ypl dapproxy user read access to all information.
access to dn=".*, dc=pl ai nj oe, dc=org"
by dn="ui d=ypl dappr oxy, ou=peopl e, dc=pl ai nj oe, dc=org" read

However, this configuration allows users to view passwords for all accounts using the ypcat(1) or ypmatch(1)
commands. To prevent users from accessing passwords, the hi de_passwor d parameter instructs ypldapd to
implement shadow passwords:

Hi de the password field fromnonprivil eged users.
hi de_passwor ds on

Onceypldapd is running, you should be able to test the server using the various yp* commands. For example:

ypwhi ch
192.168. 1.77

ypmat ch gcarter passwd. bynanme
gcarter: ##gcarter: 780: 100: G Carter:/hone/ gcarter:/bin/bash

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

Chapter 7. Email and LDAP

One of the most important applications of a directory is storing email addresses and other contact information.
Although many ad hoc solutions to this problem have been implemented over the years, LDAP provides a natural
online publishing service for this type of data. This chapter explores the ins and outs of integrating email clients
(MUASs) and mail servers (MTAs) with an LDAP directory. It covers the configuration details of some of the more
popular email clients, including Mozilla Mail, Pine, Microsoft Outlook, and Eudora. We'll also discuss the schema
required to support these clients and the types of LDAP searches to expect when the application attempts to locate
a user in the directory.

On the server side, we'll discuss three popular email servers—Sendmail, Postfix, and Exim—all of which can use a
directory. We will cover the level of LDAP support within each MTA, the schema needed to support this integration,
and the configuration process for integrating an LDAP directory into a production email environment. This
discussion assumes that you are familiar with basic MTA administration and the interaction between SMTP servers.

[TeamLiB1] [Crreviovs]

[Team LB] [<ereviovs)

7.1 Representing Users

The server you will build combines the white pages server you created in Chapter 4 and the server for
administrative databases you created in Chapter 6 as a replacement for NIS. You already have a head start on
integrating user account information because both servers used the ou=peopl e container for storing user account
information. With only a few modifications to your directory, the posi xAccount and i net OrgPerson object
classes can be used to store a single user entry for both authentication and contact information.

Here's an entry for "Kristi Carter," which is similar to those presented in Chapter 4:

dn: cn=Kristi W Carter, ou=peopl e, dc=pl ai nj oe, dc=org
obj ectCl ass: inetOrgPerson

cn: Kristi W Carter

sn: Carter

mai | : kcarter @l ai nj oe. org

| abel edURI: http://ww. plainjoe.org/~kristi
roomN\unber: 102 Ransey Hal |

t el ephoneNunber: 222-555-2356

InChapter 6, this same user might have been presented as:

dn: uid=kristi, ou=peopl e, dc=pl ai nj oe, dc=or g
uid: kristi

cn: Kristi Carter

obj ectCl ass: account

obj ectCl ass: posixAccount

user Password: {crypt}LnM)/ n2r@sR c
| ogi nShel | : /bin/bash

ui dNunber: 781

gi dNunber: 100

hormeDirectory: /honme/kristi

gecos: Kristi Carter

Looking at both examples side by side, some differences can be noted. The first is that the RDN used for each
entry is different. It doesn't really matter whether you choose cn=Kristi WCar t er or ui d=kri sti. Since Unix
accounts must already possess a unique login name, the ui d attribute is a good choice to prevent name conflicts in
ou=peopl e.

The second issue is more serious and shows why the initial directory design should not be rushed. Both the
account and i net OrgPerson object classes are structural object classes. Remember that an entry cannot have
more than one structural object class and that once an entry is created, its structural class cannot be changed.
Some LDAP servers may allow you to reassign an entry's object classes at will, but do not rely on this behavior.

To solve this dilemma, initially create each entry with the i net OrgPer son class and then extend it using the
posi xAccount auxiliary class. The means that the account entry will have to filtered from the output of PADL's
migration scripts—a simple task using grep:

$./mgrate_passwd. pl /etc/passwd | \
grep -iv "objectclass: account" > passwd. |dif

The combined user entry now appears as:

dn: wuid=kristi, ou=peopl e, dc=pl ai nj oe, dc=or g
obj ectCl ass: inetOrgPerson

obj ectCl ass: posi xAccount

cn: Kristi Carter

cn: Kristi W Carter

sn: Carter

mai | : kcarter @l ai nj oe. org

| abel edURI: http://ww. plainjoe.org/~kristi

roomNunber: 102 Ransey Hal |

t el ephoneNunber: 222-555-2356

uid: kristi

user Password: {crypt}LnM)/ n2r@sR ¢
| ogi nShel |: /bin/bash

ui dNunber: 781

gi dNunber: 100

homeDirectory: /home/kristi

gecos: Kristi Carter

One final note before we begin looking at specifics of email integration: the mai | attribute is optional in the
i net OrgPerson schema definition. However, it's clearly mandatory when you're trying to support mail clients and
servers.

[Team LB] [« ereviovs)

[Team LB] [<ereviovs)

7.2 Email Clients and LDAP

Whenplanning a strategy for supporting an application with a directory, you always start by examining the
application and determining what schema has the ability to support it. Using a standard schema is vastly preferable
to building your own. Of course, with email you don't have the ability to specify what client users will use: at your
site, many different clients are probably in use, and you won't make friends by asking users to change. In this
section, we'll look at four clients, all of which are in common use: Mozilla Mail, Pine from the University of
Washington, Qualcomm's Eudora, and Microsoft's Outlook Express. Fortunately, the i net Or gPerson schema
supports all of the information items we are concerned with using in this section.

The following parameters are common to all clients:

e The LDAP server is Idap.plainjoe.org.
e The base search suffix is ou=peopl e, dc=pl ai nj oe, dc=or g.

Beyond the basic LDAP search parameters and supporting schema, it is imperative to know what version of LDAP
the clients will use. Table 7-1 reveals that 3 out of the 4 mail clients listed use LDAPv2 to bind to the directory
server. This means that you must explicitly add support for these connections as OpenLDAP 2.1 rejects LDAPv2
binds in default configurations. Add the following line to the global section of slapd.conf:

Al low LDAPv2 binds fromclients needed by several mail client packages.
al |l ow bi nd_v2

then restart the OpenLDAP server to make it recognize the change.

Table 7-1. LDAP versions used by various mail clients

Mail client LDAPV2 bind LDAPV3 bind
Mozilla Mail v/
Pine 4 v
Eudora v
Outlook Express v

7.2.1 Mozilla Malil

In 1998, Netscape Communications announced that it would give away the source code to the next generation of

Netscape Communicator browser suites. In the Fall of 2002, the 1.0 release of Mozilla finally saw the light of day.

Today, this code base is still alive, well, and growing at http://www.mozilla.org/. Versions of the browser suite are
available for various flavors of Unix, Windows, and Mac OS.

Whenconfiguring Mozilla's address book client to access a directory, you must keep two questions in mind:

e Should users be required to authenticate themselves, or should they be able to access directory information
anonymously?

e Should the information sent to and retrieved from the LDAP server be sent in clear-text form (i.e., LDAP), or
should it be transmitted over SSL (i.e., LDAPS)?

The simplest method of adding a new directory server profile in Mozilla is through the Address Book application
shown in Figure 7-1. Select File =% New ==%# LDAP Directory to launch the Directory Server Properties dialog

shown in Figure 7-2.

http://www.mozilla.org/

Figure 7-1. Adding a new LDAP directory to the Mozilla Address Book

Eile Edit Miew Tools Window Help
7Y ucress Book Can..]
Cloee Ciri+W Falling List
Page Satup.. Address Book Clwar | Advanced. |
Erint Card... CHisP LOwP Directory... Wore Phone | Organiz_. | m
Frint fddress Book. . essaga Cilabd
Prifil Freview Card Mavigator Window CirleN
Frint Fraview Address Eook Composer Page -
Gt Cirl=2 |
% A & [| Total Cards in Plainjos Dot Org: D i

Figure 7-2. Setting directory search parameters

& Directory Server Properties

General | Ofing | Advanced|

Harme; [Plainjoe Dot Org

Hostname: |ldap.plainjoe.org |

Basze DN: [nu =people,de=plainjoe, dc=org |

Bor number. |339
Bind DN; |

_| Use secure connection (35L)

ok | cancel | Hep |

The Name field lets you provide a descriptive title name for the directory (Plainjoe Dot Org); this name is used in
the address book display window, but has no other effect on directory lookups. Put the hostname or IP address of
the directory server in the Hostname field (Idap.plainjoe.org). Set the Base DN to the base search suffix used when
querying the server (ou=peopl e, dc=pl ai nj oe, dc=0r g). The Port number, which defaults to port tcp/389 for
non-SSL directories, should be set to the port on which the LDAP server is listening. By default, Mozilla uses an
anonymous bind when searching the server. If a simple bind is preferred, you can define the Bind DN to use for
authentication. Mozilla will prompt you for the corresponding password before it actually performs a search.

Once the directory has been added to the list of address books, you can query the directory by entering a
substring to search for, or by using some of the more advanced search dialogs. Figure 7-3 shows the basic
substring search test entry box. Any text you enter in this box is used to query the cn,sn,gi venNane, and mai |

attributes using a subtree search scope. For example, if you enter the text "carter"”, the client uses this search
filter:

(|(mail =*carter*)(cn=*carter*)(gi venName=*carter*)(sn=*carter*))

Figure 7-3. Basic search screen in the Mozilla Address Book

= Filainjee Dot Org
i Personal Addngss
Collecied Addrasses

[
Fie Edit Wiew Tools
i, v, W
Lo A
Adiress Books

[faddress Book
Windm Help
® o

Hame or Email contains: [carler
Mane

Email
jery¥plainjoe.org
camannowhars. net
kranter@alainjos.ong

= |Jerry Cerler
| Krigli Carar

‘Work Phione

222-555-2340
35512312
Z2E-555-2356

Card for Gerald W. Carter

Contact
Dispkay Mame: Gerald W Cane

mall e plain) g arg

Fhone

Whoak: 222-555-2345
Bdodile: 222-555-1011

Fager 237-055-0TA3

Work.
Engin@anng

b is & [E] | 3 malches found =

f_-?: A simple way to determine the search filters used by any LDAP client is to enable
- connection logging on your directory server. OpenLDAP uses log level 256 for this purpose.
hat f: Another possibility is to use a network traffic-monitoring tool such as Ethereal that can

decode LDAP requests and replies. More information about Ethereal can be found at
http://www.ethereal.com/.

The advanced search dialog box (Eigure 7-4) allows you to create more elaborate searches. The string entered as
the search characteristic is the text for which you're searching; for example, the text "jerry" entered as part of the
email address would result in the search filter of (nai | =*j erry*).

Figure 7-4. Advanced searching in the Mozilla Address Book

[] X Aghvanced Address Book Search = - |la
Search in: | Plainjoe Dot Org 7| search |
Clear |
Halp
+ Match all of the fallowing # Match any of the fallewing
‘ the Il:rnsul j contains ﬂ |J"E|'75-'
contains
Mare | | dogsn't contain
is
Mame | Email Screer 50t e Drganization |=|
& Gerald W... jerryédplalinjoe. baging with 2345
ends with
I sounds ke
I [1 matches found T =

If the user selects the "Use secure connection (SSL)" checkbox on the directory properties window displayed in
Figure 7-2, Netscape automatically changes the configured port number to tcp/636 (LDAPS). All traffic between the
address book client and the directory server will be encrypted. Do not confuse this secure connection with the
StartTLS LDAPv3 extension. Mozilla supports LDAPS only for secure communication with the directory server.

For this configuration to work, the LDAP server must be configured to support LDAPS and be listening on the port
specified by the Server Port entry field. In addition, the Mozilla client must trust the certificate used by the LDAP
server.

The procedure for configuring a directory server to support LDAPS varies from vendor to vendor; refer to your
server documentation for details. In the case of OpenLDAP 2, you must generate a certificate and key file for slapd
(refer to Chapter 3 for details on this) and then instruct the daemon to associate LDAPS with the correct port. The
-h command-line option tells slapd which protocols to support. The command below starts slapd with support for
LDAP and LDAPS on the default tcp ports 389 (for LDAP) and 636 (for LDAPS):

root# /usr/local/libexec/slapd -h "lIdap:/// |daps:///"

Unless the LDAP server's certificate can be verified by a certificate authority (CA), Mozilla will ask you whether it
should trust the server before continuing the connection. If you decide that this will be too much trouble (or

http://www.ethereal.com/

confusing) for your users, avoid self-signed certificates (or set up your own CA).

7.2.2 Pine 4

Pine is a popular, console-based email client developed by the University of Washington. The source distribution of
the mail client is available at http://www.washington.edu/pine/; precompiled versions are available for most
modern Unix and Unix-like systems. Support for retrieving addresses from an LDAP directory was introduced in
Pine 4.00. A Windows version of Pine, known as PC-Pine, offers similar features to the Unix version, including LDAP
support.PC-Pine is available from the University of Washington at http://www.washington.edu/pine/pc-pine/.

If you are using a precompiled version of Pine, you must ensure that LDAP support was enabled when the package
was built. LDAP-enabled versions of Pine should allow you to configure a new directory from the Setup menu, as

shown in Figure 7-5.

Figure 7-5. Setup menu for Pine 4

X jerry@queso:~ <2

FIHE 4 .44 CHAMGE S DIRECTORY SEREYVER

p Jo=do=org

EI:F le.d
389
Flain joa People

Set Feature Hanes

[H] use-implicitly-Fron-corpossr

[1 lockup-addrbook-contents

[1 save-search-criteris-not-result
[1 disable-ad-hoc—space-substitution

Set RuEe Values

{3 name

L2 surnane
{3 glvennane

Exit Setup Prev ! PrevPage i Fod Value Print
[Change Vall § Hext He=tPage N Delete Val ¥ Hherels
- — SR - -

Pine's directory configuration screen supports the common LDAP search parameters, including:

| dap- server

The IP address or hostname of the directory server (Idap.plainjoe.org)
sear ch- base

The base search suffix (ou=peopl e, dc=pl ai nj oe, dc=or g)
port

The tcp port on which the server is listening (389)
ni ckname

A descriptive display name (Plainjoe People)

Pine allows users to construct searches using up to four search attributes. By default, it uses the name (cn),
surname (sn), given name (gi venNane), and email (mai |) attributes. The default search filters only append the
wildcard onto the end of the user's search string. For example, by default, Pine converts an email search for the
string "kristi" into the search filter:

(| (cn=kristi*)(mail=kristi*)(sn=kristi*)(givenNane=kristi*))

However, Pine offers a fair amount of flexibility for more adventurous users; you can change the kind of substring
match (e.g., exact match, match at the beginning, match at the end, match anywhere), change the attributes Pine
uses in the search, or specify a custom search filter. All of these settings can be accessed from Pine's directory
configuration screen.

http://www.washington.edu/pine/
http://www.washington.edu/pine/pc-pine/

One shortcoming of Pine's LDAP implementation is the lack of support for LDAPS (and the fact that it uses
LDAPv2). Although Pine supports SSL, it supports SSL only for POP or IMAP access to mailboxes. Pine cannot use
SSL to access an LDAP directory.

7.2.3 Eudora

Qualcomm's Eudora has become a popular mail client on both Windows and Mac OS platforms. Configuring access
to an LDAP directory in Eudora is similar to configuring LDAP for Mozilla. To start, go to the Modify Database
window shown in Figure 7-6 by selecting the LDAP protocol from the directory window (Tools o Directory
Services) and clicking the New Database button.

Figure 7-6. Modify Database dialog views used by Eudora 5.1 for Windows

[bdoes 18]]

PR Y PRI T

> Directory Services -0l =|

X x|
Qe [2 ||]| === Metreork | Apvibases | Sessch Opiiore | Log |
Ststuz Fleady Bt
Name | Emad | Phore | Datsbmie el
e Ef_rI'Ph Ty the narme by which you woukd B (o reler ko fhis server.
1 &P
LOAP on Plargoe Dol Org
Lislabysey Sarves mitamaion
| (Copiigured Servgts Hoat Mame: [idsp plarsos g
Y yer——
¥ Big Foot Frst: £
WALOAP on Pl
g:‘:;m I This sarver rsguines me o kg on
i Dualcorm Aoount rume |
Pasmoid: |
| | | I Emeot e
" Address Book | B Directory Services |03 il G4F o | Caed | |
|
I§m¢uuymnu Quﬁum
For Help, prass Fl
i Sart| B Comrercand Prompt | 1 i - Pt || 5 Eudera A8 103 am

The Network tab allows you to specify connection information for the directory server. If you configure Eudora to
use a login name and password to search the directory, the username must be in the form of a DN. The Search
Options view shows that Eudora, by default, performs a substring match on the cn attribute; you can customize
the search using standard search filter syntax. The Attributes dialog shown in Figure 7-6 provides a way to select
which attributes are shown in response to a directory query. Eudora displays all the attributes for each entry that
the search returns. You can define more descriptive names for attribute types using the Attributes window; for
example, you can display the cn attribute type as "Real Name."

Eudora 5.1 does not support LDAPS when searching directories.

7.2.4 Microsoft Outlook Express

Microsoft Outlook in its various incarnations has become one of the most important mail clients on Windows
networks. This section examines the version of Outlook Express that is included with Microsoft's Internet Explorer.

To configure OutlookExpress to use a directory, start with the Directory Services configuration dialog, shown in
Figure 7-7. To get to this dialog, select Tools =+ Accounts. The General tab contains settings for the directory
server host information, such as the server's hostname and display name. The Advanced tab provides a means to
define the port on which the server is listening and the base search suffix.

Figure 7-7. The Directory Services configuration window from Outlook Express 5.5

™ Address Book - Main Bdentity "' LoaP on Plaingoe Dot Drg Properties
B P pr—

Dwechory Senvace Aecount
— Diecoy Saric | Tmhm»mmmnmwuu

énfﬂr

Tpe
i Diteciony kg T '_D.a.Pum-mD:tl:nn
Bigfoot bntemet deecioy servce

Py Pletrannk: ilSign Inbemet . dercory servce [— [plangoe: ok
Places Inkes., deeclon senvce

™ Thiz serves raguires me o kg on

r

¥ Check name: agsingt iz server when sending mal

(o
R

bt
Eapilirer

if et | (58 Comrerand Pronrgd | 3 #rige ey - Pt | 2 etk Expres ([Address Book - ran . %@ 103 am

Tosearch for someone in a directory, Outlook users go to the Find People dialog shown in Figure 7-8. Outlook
Express uses a combination of the cn,sn,mai | , and gi venNane attributes to generate the search filter. A search

for the user "carter" is translated into a search filter very similar to the one used by both Mozilla Mail and Pine:

(| (mail =carter*)(cn=carter*)(sn=carter*)(gi vennane=carter*))

Figure 7-8. Using the Find People dialog to search an LDAP directory

Wb Find Peogle - (3 entries found) _‘”EI
Look in: ILDAF‘ on Planjee Dot Org :I welr Site., I
Paaple Iﬂu:hrmd I
Manmer: I carter
Stog |
E-mail: I
Cleas A1 |
Glose |
Mame [EMail Addess | Properties |
4= C Geaald Canler = gerdd:alber@g'n:aler Com
L _-'_EI erakd Camer jempEplamjoe ong Delete I
G izt Cartes lemst@plainjoe. ceg Ackd o fuddrass Boak I
4 | A

Searches can be customized using the Advanced tab of the Find People dialog in Figure 7-8.

Like both Mozilla and Eudora, Outlook Express can perform authenticated binds when searching a directory. If you
check "This server requires me to logon," Outlook asks for a user ID and password, which it uses when binding to
the server. Unlike Eudora, which expected a DN only for the username, Outlook Express supports two different
styles of usernames. When using a simple bind, Outlook expects the login name to be the DN used in the bind
request. However, if the "Logon using Secure Password Authentication” box is checked, Outlook negotiates with
the directory server to use the NTLMv1 challenge/response authentication model (or possibly the GSSAPI SASL
mechanism).

1 Refer to your directory server's documentation to determine whether it supports NTLM

..;n authentication. OpenLDAP does not currently support this feature.
wh
i

T

Outlook Express is a little more friendly than Mozilla when it comes to using LDAPS to connect to a directory
server. On Windows 98, simply indicating that the directory server should be accessed using SSL on port 636 is
enough. It is not necessary to tell Internet Explorer or Outlook to trust the self-signed certificate used by an
OpenLDAP server. I'll let you decide whether this is a good thing; Mozilla was less trusting, requiring you to tell it
to trust the LDAP server's certificate.

[TeamLiB] [Crreviovs]

[Team LB] [<ereviovs)

7.3 Mail Transfer Agents (MTAS)

The remainder of this chapter discusses LDAP support within several popular MTAs. You can skim this material if
you want an overview of various mail servers, or you can focus on the details regarding your specific MTA and skip
the others. In either case, | assume that you have some familiarity with the Simple Mail Transport Protocol (SMTP)
and mail servers in general.

Before we begin, Table 7-2 provides a summary of the LDAP versions used by the mail servers presented in this

section. The same rule for enabling LDAPv2 binds described in the beginning of this chapter still holds true for two
out of the three mail servers listed.

Table 7-2. LDAP versions used by various mail servers

Mail transfer agent LDAPV2 bind LDAPV3 bind
Sendmail v
Postfix v
Exim v/

7.3.1 Sendmail

Sendmail is the default MTA on most current versions of Unix. A number of alternatives have appeared in the past
few years (such as Postfix, Qmail, and Exim), but if you work with Unix or Linux systems, chances are you'll deal
with Sendmail. Sendmail introduced support for retrieving information from an LDAP directory in Version 8.9.
However, this support didn't really stabilize until later versions (this discussion focuses on Version 8.12). It by no
means attempts to give comprehensive coverage of Sendmail. For information on the details of configuring and
running a Sendmail server, refer to Sendmail, by Bryan Costales and Eric Allman (O'Reilly).

Sendmail's LDAP integration falls into four categories: support for retrieving mail aliases from a directory, support
for accessing generic Sendmail maps using LDAP queries, expansion of Sendmail classes at startup using
information obtained from a directory, and support for retrieving specific mail-routing information from an LDAP
directory. We will return to the specifics of these features in later sections.

In order to support any of these functions, Sendmail must be compiled with the LDAPMAP option enabled. Here's
how to modify site.config.m4 to compile LDAP against the client libraries installed by OpenLDAP 2:

dnl . . . /devtools/Sitel/site.config.nd

dnl Enabl e LDAP features in Sendmail during conpilation
dnl

APPENDDEF (* conf MAPDEF", " - DLDAPMAP") dnl

APPENDDEF(" confLIBS, "-lldap -1lber”)dnl

dnl

dnl The following two entries are needed so

dnl that make can find the the |dap header files
dnl and libraries

APPENDDEF (" conf I NCDI RS, " -1/opt/ | dap/i nclude”)dnl
APPENDDEF (" conf LIBDI RS, “-L/opt/ldap/lib")dnl

Refer to the sendmail/README file for any relevant details about your server's operating system, particularly if
you're using LDAP libraries other than OpenLDAP. The previous example was used to build Sendmail 8.12.6 linked
against OpenLDAP client libraries on a Linux system. The resulting sendmail binary should be checked to ensure
that the LDAPMAP option was properly enabled. Here we have a Linux host named garion that includes several
compile-time options that were enabled by default. The only one to be concerned with is the LDAPMAP flag that
you specified in site.config.m4:

$ cd sendmail -8. 12. 6/ obj . Li nux. 2. 4. 19. i 686/ sendnmi |
$ echo | ./sendmail -bt -dO
Version 8.12.6
Conpil ed wi th: DNSMAP LDAPMAP LOG MATCHGECCS M ME7TTO8
M MESTO7 NAMED Bl ND NETI NET NETUni x NEWDB
Pl PELI NI NG SCANF USERDB USE_LDAP_I N T XDEBUG

SYSTEM | DENTI TY (after readcf) == == == =

(short domai n nane) $w = garion
(canoni cal domain nane) $j = garion.plainjoe.org
(subdomai n name) $m = pl ai nj oe.org
(node nane) $k = garion

Sendmail 8.12 includes what developers have described as an experimental schema file for OpenLDAP 2. The
attributes and object classes are not defined in any Internet-Draft or RFC and may change in future releases.
Because we are mainly concerned with exploring the specifics of sendmail, this is of little risk to us. However, if
other applications made use of it, changes to the directory schema would require tight control so no dependencies
are broken. Figure 7-9 displays the six object classes defined Sendmail's schema file. All of the attributes are
defined as strings (either as a Directory String or an 1A5String).

=

There is a syntax error in the sendmail.schema file included with Sendmail 8.12.6. The
sendnai | MTAAl i as@ oupi ng attribute uses an invalid combination with String matching
rules. This can be fixed by changing the SYNTAX for this attribute to use the Directory
String OID (1.3.6.1.4.1.1466.115.121.1.15).

Figure 7-9. Object classes defined in sendmail.schema

jrmmmm e | ohjectCless: sendmailMTAMap obgectClass sendmailMTAMap D Eect
i Fequired — | sendmailTAMapHame: sendmailMTAMaphame:)
' Femmmsssesmennscsmeap - - | sandmailMTAMapkey: — Required
P‘"?”r) serdmallMTAC uster: PArent | ondmailMTAMapValue:
H Optianal—| condmailMTAHest [remsmmmmmmmsm e
: description; sendmailMTACluster;
ohjectClass sendmailMTA sendrmailhTAHosE — Cpeianal
sendrmail MTACIuster- description:
sendmallMTAHgst: — (prional
description:
4 objectllass: sendmallMTAAls objectClzss: sendmallMTARlIas0hject
Ty -
' Farent | sendmailMTAAliasGrouping: [Parent | sendmailMTARiasKzy: — Reauived
Parent Optianal — sendmail MTACluster: sendmailMTAAliasValue: B
1 sendmallMT&HesE [mrmm=mmmmmmmmmmmm— -
.} description: semdmalMTAM s Groupng
- - sendmailMTACluster: — Optianal
objectClass: sendmailMTAClass condmailWTAHget i
Fequired — | sondmailMTAClassName: description:
sendmalMTACLssNalue:
sendmailMTACluster:
Optiand — | sendmailMTAHost:
description:

To install the Sendmail objects and attributes, simply copy sendmail.schema to the schema/ directory:
root# cp cf/sendmail.schema /usr/| ocal/etc/openl dap/ schema
and then include it in the global section of slapd.conf:

Add support for
i ncl ude

Sendmai | 8. 12 objects and atrri butes.
/usr/l ocal / et c/ openl dap/ schema/ sendmai |l . schema

As usual, slapd will need to be restarted to recognize the new items.

7.3.1.1 Maps

To access information quickly, Sendmail uses a number of maps in which it retrieves dates by searching for a
unique key value. These maps can take various forms; some of the more common ones are the Berkeley DBM or
YP/NIS maps. Within the sendmail.cf file, an LDAP map is designated by the | dap keyword. If you're hacking the
Sendmail configuration directly, you can use LDAP for any of the maps, but that's beyond the scope of this book.
We will work only with Sendmail's m4 configuration generator.

Sendmail provides support for several frequently used maps as FEATURE()s. Any of these features that accept an
optional argument to refine the search can also accept the keyword LDAP to specify that the lookup should be
performed using directory calls. The most basic definition of an access_db table using LDAP would look like:

FEATURE(" access_db”, "~ LDAP")
The default sendmail.cf entry generated for this m4 macro is:

Kaccess | dap -k (&(objectCl ass=sendmai | MTAMapObj ect)
(sendmai | MTAMapNane=access)
(] (sendnei | MTACI ust er =${ sendnai | MTACl uster})
(sendmai | MTAHost =$j))
(sendmai | MTAKey =%0))
-1 -v sendmmi | MTAMapVal ue

The-k option defines the search, and the -v parameter specifies the name of the attribute's value to return. -1
indicates that the search must return only one value or else it will be considered a failure. Table 7-3 contains a
complete list of LDAP-specific options. It is best to refer to the Sendmail documentation (doc/op/op.ps) for a
complete list of all lookup parameters.

Table 7-3. Configuration options for use with LDAP maps

Switch Description

-1 The search must return a single value or else it is considered to be a failed lookup.

-b suffix The DN to use as the base search suffix.

-d binddn Defines a DN to use when binding to the directory.

-h hostname |The LDAP server hostname.

-k filter Defines the search filter.
-l time-Z) . R . . o
size Define the time and size limits for a given search. The time limit is given in seconds.
M thod The method of authentication to use when binding to the LDAP server: LDAP_AUTH_NONE,
-V method) pap AUTH_SI MPLE, or LDAP_AUTH_KRBVA4.
Retrieves attribute names only, not values. This is the same as the attr s(nhl y Boolean flag used
-, duringl dap_search().
-P pwfile The file containing the credentials for -dbinddn.
-p port The port to use when connecting to the LDAP server.
-R Does not automatically chase referrals.

deref Controls how Sendmail should dereference aliases when searching: never ,al ways,sear ch, or
-r dere .
find.

-S The search scope (base,one, or sub).
-V sep Retrieves both the attribute name and value separated by the sep character.
-V Defines the attribute type that contains the value of the search result.

It is possible to define your own defaults for LDAP searches using the conf LDAP_DEFAULT_SPEC variable in your
m4 source file. This is a common place to set the hostname of the LDAP server and the base suffix used in
searches. We will see an example of this later when we discuss aliases.

Table 7-4 lists all of the the Sendmail m4 features that support LDAP queries.

Table 7-4. Sendmail features that can be defined to use LDAP searches

Feature sendmailMTAMapName Description
access_db access List of hosts or networks that should be allowed to relay mail
aut hi nfo aut hi nfo Provides a separate map for storing client authentication information
bit dormai n bi t domai n A table for mapping bitnet hosts to Internet addresses
domai nt able |domain Makes use of a table that maps domain names to new domain names

Utilizes a table that contains rules for rewriting sender addresses in

genericst abl e|generics i i
outgoing mail

Includes support for a mailer table that contains rules for routing mail

mai l ertable |mailer > -
to specific domains

uucpdomnai n uucpdomai n A table for mapping UUCP hosts to Internet addresses
virtusertabl elvirtuser Includes support for a domain-specific version of aliasing
7.3.1.2 Aliases

Before implementing mail alias lookups via LDAP, let's begin with a simple sendmail.mc configuration file for a
central mail hub for the plainjoe.org domain. Figure 7-10 illustrates how this host fits into the plainjoe.org network.
Clients on the network spool messages to the mail hub, which ensures that all outgoing messages have a send in
the form of user@plainjoe.org:

divert(-1)

BHEFH R HH T R H A R T R R R R AR S R R A R R R
Sendmail m4 file for plainjoe.org mail hub on | ocal
net wor k.

HHAFH R A R R R R R A R R AR R R R R R

divert(0)

OSTYPE(" |'i nux”) dnl

FEATURE(“use_cw fil e”)dnl

dnl

dnl Masquer ading settings

dnl

EXPOSED_USER("r oot ") dnl

MASQUERADE_AS(" pl ai njoe. org”)dnl

MASQUERADE _DONAI N ™ pl ai njoe. org”)dnl

FEATURE(" masquer ade_envel ope”) dnl

FEATURE(" nasquer ade_entire_domain”) dnl

dnl

FEATURE("rel ay_entire_donai n”) dnl

FEATURE("l ocal _procmai | “)dnl

defi ne(” PROCMAI L_MAI LER_PATH, “/usr/bin/procmail”)dnl

define(” STATUS FILE", “/var/log/mail.stats”)dnl

dnl

dnl Mail er settings

dnl

MAI LER(“sntp”)dnl

MAI LER(" procnai | 7) dnl

Figure 7-10. Utilizing a simple mail hub for the plainjoe.org domain

Mail client Mail hub

Frem:-userihast . plainjoe.cm
To: userd@somedamain.com

i

Fromc user#plainjoe. o
To: userd@somedomain.com

Internet

TheALIAS_FILE m4 option (AliasFile in sendmail.cf) allows an administrator to define the location of the aliases file
(even within an LDAP directory). A very basic /etc/mail/aliases might appear as:

post mast er: root, mailadm n@l ainjoe. org
nobody: /dev/nul |

Here, the postmaster alias maps to the root account and the address mailadmin@plainjoe.org. Any mail addressed
tonobody@plainjoe.org is sent to the bit bucket (/dev/null).

To use Sendmail's default LDAP search parameters for aliases, simply add:
define(ALI AS FILE", “Ildap:)dnl

to the source m4 configuration file. This will generate a search similar to the one shown for the access_db lookup.
However, this default search does not restrict the returned results to a single value (i.e., there is no -1 option
specified).

| dap -k (& objectCl ass=sendmai | MTAAl i asCbj ect)
(sendmai | MTAAl i asGroupi ng=al i ases)
(| (sendmai | MTAQ uster =${ sendmai | MTACl ust er })
(sendmai | MTAHost =$j))
(sendmai | MTAKey=%9))
-v sendnmi | MTAAli asVal ue

You could integrate the mail aliases into the existing ou=peopl e organizational unit within your directory. There is
one main problem with this, however: all of the object classes defined in sendmail.schema are defined as
structural. The user accounts with ou=peopl e cannot have a second structural class. You should therefore create a
newou to store aliases for Sendmail. Other applications may arise in the future that also require a portion of the
directory for storing data. In preparation, the naming scheme

ou=ser vi cenane, ou=ser vi ces, dc=pl ai nj oe, dc=or g has been chosen to organize subtrees. Figure 7-11
shows your new directory namespace.

Figure 7-11. New ou=aliases for use by Sendmail

de=plainjoe,dc=om

ou=Group nisMapMamea=aute.opt

ou=Peaple oU=netgroup

The LDIF needed to create these three new ous should be very familiar by now:

dn: ou=servi ces, dc=plai njoe, dc=org
obj ectCl ass: organi zational Unit
ou: services

dn: ou=sendmail , ou=servi ces, dc=pl ai nj oe, dc=or g
ou: sendnai
obj ectCl ass: organi zational Unit

dn: ou=al i ases, ou=sendnril , ou=servi ces, dc=pl ai nj oe, dc=org
obj ectCl ass: organi zati onal Uni t
ou: aliases

Next, you will create the directory entries corresponding to the /etc/mail/aliases entries for post mast er and
nobody:

dn: sendmai | MTAKey=post nast er, ou=al i ases, ou=sendmai | ,
ou=ser vi ces, dc=pl ai nj oe, dc=org

obj ectCl ass: sendmai | MTAAl i asObj ect

sendmai | MTAAl i asVal ue: r oot

sendmai | MTAAl i asVal ue: mai | adm n@l ai nj oe. org

sendnei | MTAKey: post mast er

dn: sendmai | MTAKey=post nast er, ou=al i ases, ou=sendnmai | ,
ou=ser vi ces, dc=pl ai nj oe, dc=org

obj ectCl ass: sendmai | MTAA i asObj ect

sendmai | MTAAl i asVal ue: /dev/ nul

sendmai | MTAKey: nobody

The final step is to configure the actual lookup in sendmail.mc. Because you expect to use additional LDAP
searches in Sendmail, it is best to define any global defaults using conf LDAP_DEFAULT_SPEC. Specify that all

LDAP requests should be sent to the host Idap.plainjoe.org:
def i ne(conf LDAP_DEFAULT_SPEC, "-h | dap. pl ai nj oe. org) dnl

TheALl AS_FI LE definition will contain the base suffix, search filter, and requested attribute values. By default,
Sendmail uses a subtree scope, which is fine for the alias searches:

define(ALl AS FILE", "ldap:-k

(& object d ass=sendnmai | MTAAl i as(hj ect) (sendnai | MTAKey=90))

-v sendmai | MTAAl i asVal ue

-b "ou=al i ases, ou=sendnmil , ou=ser vi ces, dc=pl ai nj oe,dc=org" ") dnl

After generating and installing the new sendmail.cf file:

$ cd sendnai |l -8. 12. 6/ cf/ cf
$ sh Build sendmail . cf
$ /bin/fsu -c "cp sendmail.cf /etc/mail/sendmail.cf"

you can test aliases using Sendmail's verify mode (sendmail-bv):

$ sendmai |l -bv postnmaster @l ai njoe. org
root . . . deliverable: mailer local, user root
mai | adm n@l ainjoe.org . . . deliverable: nailer local, user mailadmn

Before continuing on to Sendmail'sl dap_rout i ng feature, you may be wondering what advantage was achieved
by storing Sendmail's aliases in LDAP. After all, you did create a new subtree within the directory, and it certainly
does seem that some information, such as usernames, will end up being duplicated from the organizational unit.
How did you reduce the duplication of data?

By shifting your focus from account management to service management, you can see that your directory provides
a means of sharing basic Sendmail configuration data among multiple servers. This means that you no longer have
to manage duplicate /etc/mail/aliases files on each of your Sendmail hosts. Remember that the default Sendmail

LDAP queries include:
(| (sendnmai | MTACI ust er =${ sendrai | MTAQ uster})(sendnai | MTAHost =$j))

as part of the search filter. A Sendmail installation can be defined as a member of a cluster using the
conf LDAP_CQLUSTER variable:

define(conf LDAP_CLUSTER, "MilCluster”)

This provides a means of associating directory entries with individual hosts ($j) or groups of servers
(${sendmai | MTAQ ust er }).

7.3.1.3 Mail routing using LDAP

Sendmail's LDAP mail-routing functionality can be described as an LDAP virt usert abl e. This is a domain-specific
form of aliasing that supports the handling of virtual domains. It provides rules for rewriting recipient addresses or
rerouting a message to the appropriate host. The following virtual user table entry would route messages that are
addressed to joe@foo.com to the host somehost.foo.com:

j oe@ oo. com sonehost . f 00.com

Under its default configuration, Sendmail's | dap_rout i ng uses the i net Local Mai | Reci pi ent auxiliary object
class defined in the expired Internet-Draft draft-lachman-laser-ldap-mail-routing-xx.txt. A version of this draft is
included with the OpenLDAP source distribution. There are no required attributes in this object class, as you can

see in Figure 7-12.

Figure 7-12. inetLocalMailRecipient object class used by Sendmail's FEATURE(Idap_routing")

obgectClass: inetLocalMailRecipient

mizilLecalAddress:
Optional — | mailHost:
izl Reutinghddress

The three optional attributes in i net Local Mai | Reci pi ent are:
mai | Local Addr ess

The RFC 822-compliant mail address of the message recipient
mai | Host

The DNS name specifying the host to which the message should be relayed
mai | Rout i ngAddr ess

The RFC 822-compliant mail address to which the original recipient address should be rewritten

OpenLDAP includes a definition for the i net Local Mai | Reci pi ent object and associated attributes in

misc.schema. You must include this file in slapd.conf and restart OpenLDAP before you can support Sendmail's
| dap_routing feature:

Support the inetlLocal Mai | Recipi ent obj ect.
include /usr/local/etc/openl dap/ scheme/ m sc. schema

To enable LDAP mail routing, add the following feature definition to sendmail.mc:
FEATURE("I dap_routing’)

We must also inform Sendmail which mail domains should be routed. Without control over which email domains
Sendmail should attempt to look up in the directory, each incoming message triggers a lookup, resulting in
severely degraded performance on high-traffic sites.

To define a single routable domain, Sendmail provides the LDAPROJTE_DOMAI N m4 macro. The configuration for
your server requires you to add this line to your sendmail.mc source file:

LDAPRQUTE_DOMAI N(" pl ai nj oe. org”)

"_-‘~ A list of LDAP-routable domains can be read from a file defined by the
. LDAPROUTE_DOVAI N_FI LE macro. Sendmail 8.12 introduced support for retrieving such
wh #: class values from a directory using the syntax LDAPRQUTE_DOVAl N_FI LE(~ @ DAP") . More

information on file class macros can be found in the documentation included with
Sendmail.

As mentioned previously, | dap_routing uses the i net Local Mai | Reci pi ent object class. It is possible to use an
alternative schema by defining the | dap_rout i ng feature as:

FEATURE(" | dap_routi ng , mai | Host , mai | Rout i ngAddr ess, bounce, det ai |)

Themai | Host and mai | Rout i ngAddr ess entries are just LDAP map configuration lines; they default to:

ldap -1 -T TMPF -v mai | Host
-k (&(objectCl ass=inet Local Mail Reci pi ent)
(mai | Local Addr ess=%)))

They also default to:

ldap -1 -T TMPF -v nui | Routi ngAddr ess
-k (&(objectCl ass=inet Local Mai | Reci pi ent)
(mai | Local Addr ess=%9))

The search filters and the resulting attributes can be redefined to better suit your directory, if required. Both the
bounce and det ai | parameters specify actions to take if a lookup does not return any routing information. The
default behavior is to accept addresses not located by the LDAP search. Sendmail's cf/README file has more details
on changing this if you are interested.

The default searches used by | dap_routing do not define an LDAP server, nor do they include a search suffix.
Theconf LDAP_DEFAULT_SPEC option can be used to specify defaults for all of Sendmail's LDAP queries (maps,
aliases, classes, and mail routing):

define(” conf LDAP_DEFAULT _SPEC, “-h |l dap.plainjoe.org -b
ou=peopl e, dc=pl ai nj oe, dc=org”) dnl

This is fully compatible with the configuration used to retrieve mail aliases from the directory. The ALI AS_FI LE
option used its own base suffix (-b) which overrode any matching default set by conf LDAP_DEFAULT_SPEC.

With three optional attributes in the i net Local Mai | Reci pi ent object class, Sendmail must consider six unigue
routing cases. Note that if the mai | Local Addr ess attribute is absent, Sendmail will ignore the entry altogether.
The possible results are described in Table 7-5.

Table 7-5. Possible results from an Idap_routing search

mailHost mailRoutingAddress

Result
value value

The recipient is rewritten to mai | Rout i ngAddr ess and delivered to

A local host Exists the local host.

A local host Does not exist The mail is delivered to the original address on the local host.
A remote host Exists The mail is relayed to the mai | Rout i ngAddr ess at the nai | Host .
A remote host [Does not exist The mail is relayed to the original address at mai | Host .

The recipient is rewritten to mai | Rout i ngAddr ess and delivered to

Does not exist Exists
the local host.

The mail is delivered locally to the original address or possibly bounced

Does not exist Does not exist
as a unknown user.

The following LDIF listings help explain the entries in Table 7-5. Here, you extend the original user entries in the
ou=peopl e subtree. You could have created a new organizational unit beneath ou=sendmai | . However, adding
the mail-routing information to a user's entry means that when a user's account is deleted, the mail-routing
information is removed as well.

In the first listing, the mai | Local Addr ess and mai | Host attributes cause mail addressed to kcarter@plainjoe.org
to be relayed to the host designated by mail.engr.plainjoe.org's DNS MX record for local delivery:

dn: uid=kristi, ou=peopl e, dc=pl ai nj oe, dc=or g

obj ectcl ass: inetOrgPerson

obj ectcl ass: posi xAccount

obj ectcl ass: inetLocal Mail Reci pi ent

cn: Kristi Carter

sn: Carter

mai | : kcarter @l ai nj oe. org

mai | Local Address: kcarter@l ai njoe.org

mai | Host: mail. engr. pl ai nj oe.org

<. . . remmining attributes not shown . . . >

The following example adds the mai | Rout i ngAddr ess attribute. With this attribute, all mail addressed to
kcarter@plainjoe.org is relayed to the host named by the MX record for mail.engr.plainjoe.org, but only after the
recipient address has been rewritten to kristi@engr.plainjoe.org:

dn: wuid=kristi, ou=peopl e, dc=pl ai nj oe, dc=or g
obj ectcl ass: inetOrgPerson

obj ectcl ass: posi xAccount

obj ectcl ass: inetLocal Mail Reci pi ent

cn: Kristi Carter

sn: Carter

mai | : kcarter @l ai nj oe. org

mai | Local Addr ess: kcarter@l ai njoe. org

mai | Host: mai l. engr. pl ai nj oe.org

mai | Rout i ngAddr ess: kri sti @ngr.pl ainj oe. org
<. . . remmining attributes not shown . . . >

These rewrites can be verified using Sendmail's rule set-testing mode:

$ /usr/sbin/sendnai |l - bt
> [parse kcarter @l ainjoe.org
< . . . intervening ruleset output deleted . . . >

mai | er relay, host mail.engr.plainjoe.org,
user kristi @ngr.plainjoe.org

This output shows that mail received for kcarter@plainjoe.org will be forwarded to the host mail.engr.plainjoe.org
after rewriting the recipient address to kristi@engr.plainjoe.org.

Themai | Local Addr ess attribute can also be used to specify that all mail for a domain should be relayed to
another host. The following LDIF entry relays all mail addressed to the @plainjoe.org domain to the host denoted
byhqg.plainjoe.org's MX record:

dn: o=pl ai nj oe. org, ou=peopl e, dc=pl ai nj oe, dc=or g
obj ectcl ass: organi zati on

obj ectcl ass: inetLocal Mail Reci pi ent

o: plainjoe.org

description: plainjoe.org mail domain

mai | Local Addr ess: @l ai njoe. org

mai | Host: hq. pl ai nj oe. org

It should be noted that Sendmail gives exact matches for the mai | Local Addr ess precedence over entries
returned by matching the @domain syntax.

7.3.2 Postfix

Our next stop during this tour of MTAs is to examine Wietse Venema's Postfix mailer. This MTA is a popular
replacement for Sendmail because it has:

e Feature and interface compatibility with Sendmail
e A simpler configuration

e A history of fewer security holes

This section focuses on Postfix's ability to integrate with an LDAP directory. | assume that the terminology and
configuration files are familiar to Postfix administrators. If this is your first exposure to Venema's MTA, the Postfix
web site (http://www.postfix.org/) offers several good documents on the software's design philosophy and
architecture. It may also be helpful to refer to Postfix, by Richard Blum (Sams Publishing) for case studies of
working installations.

After the gory details of configuring LDAP queries in Sendmail, Postfix's configuration files are a welcome relief. In
comparison to Sendmail, Postfix's configuration is much more intuitive.

We will begin by ensuring that the proper features are enabled when you compile Postfix. The source distribution
for Postfix can be downloaded from http://www.postfix.org/. Assuming that the OpenLDAP 2 client libraries have
been installed in the directory /usr/local/lib/, the following commands clear all remaining intermediate files from a
previous build (just to be safe), and then create the necessary Makefiles to enable LDAP client support:

$ cd postfix-1.1.2/

$ meke tidy

$ make nakefiles CCARGS="-1/usr/local /include -DHAS LDAP" \
> AUXLI BS="-L/usr/local/lib -Ildap -IIber"

$ make

$ /bin/su -c "make install"

Refer to the LDAP_README file included with the Postfix distribution for details about building the software on your
server platform.

Postfix 1.1.2 will not compile when using the OpenLDAP 2.1 client libraries. You must use

the most recent OpenLDAP 2.0 libraries in this case (or libraries from some other vendor
described in the README_FILES/LDAP_README document). Note that this does not affect
communications with an OpenLDAP 2.1 server.

Once you have built and installed Postfix, verify that LDAP support has been included. To do so, use the postconf
utility installed with the Postfix server. The -m switch informs postconf to display the list of supported storage
mediums for tables. The output should look something like this:

$ /usr/sbin/ postconf -m
static

nis

regexp

environ

| dap

btree

uni x

hash

The exact list will vary, depending on how you've built Postfix. Your immediate concern is to verify that Idap is
listed as a supported storage medium. However, it's important to understand what's going on. Postfix maintains six
tables, any of which may be stored on any of the media reported by postconf -m.Table 7-6 introduces each of the
tables and shows which core program acts as the table's main client.

Table 7-6. Postfix tables and associated core programs

http://www.postfix.org/
http://www.postfix.org/

. Core
Table Description
program

Provides information about which messages to accept or reject based on sender, host,
Access smtpd

network , etc.
Aliases Provides information on redirecting mail received for local users. local
Canonical |Provides information on local and nonlocal addresses. cleanup
Relocated |Provides information on "user has moved to a new location” bounce messages. qmgr
Transport |Provides information on delivery methods and relay hosts for the domain. trivial-rewrite
Virtual Provides information used in redirecting local and nonlocal users or domains. cleanup

The remainder of this section shows how to configure a Postfix server to retrieve local aliases via LDAP queries.
The following configuration file, main.cf, is the starting point for our discussion:

[etc/ postfix/ main.cf
Postfix configuration file for the plainjoe.org SMIP server.
Witten by < erry@lainjoe.org>

Host / domai n i nfornation
myhostname = garion. pl ai njoe.org
nmydomai n = pl ai njoe. org

myorigin = plainjoe.org

Who is | ocal ?
mydesti nati on = local host $nyhost nane

Who do we accept nail relaying fron®
nynet wor ks = 192.168.1.0/24 127.0.0.0/8

Program | ocations

command_directory = /usr/sbin
daenon_directory = /usr/libexec/postfix
queue_directory = /var/spool /postfix
mai | _owner = postfix

Sendrmil - conpati ble mai|l spool directory
mai | _spool _directory = /var/spool / mai |

As before, an alias entry maps a local username to an email address; this address can be either another local user
or a user on a remote system. In your LDAP schema, a local user is represented by the ui d attribute of the

posi xAccount object class. The aliased entry is represented by the mai | attribute of the i net OrgPer son object
class. Note that you do not use the sendnmi | MTA and related schema objects presented in the previous section,
but rely on the original object classes and attributes used by the mail clients presented in the first half of this
chapter.

This schema does not address the case of mapping one local user to another for email delivery. Nor does it allow
the use of external files to list the addresses that should be used as expansions for aliases; this feature is useful for
supporting a local mailing list. This limitation is a result of the attributes chosen and not of Postfix's LDAP
implementation.

Here's a typical LDIF entry for a user account that has an email alias. Mail for this account (a guest account) is
forwarded to jerry @plainjoe.org:

User account including a nail alias

dn: uid=guest 1, ou=Peopl e, dc=pl ai nj oe, dc=or g
uid: guestl

cn: Guest Account

obj ect Cl ass: posi xAccount

obj ectCl ass: inetOrgPerson

user Passwor d: { CRYPT} Fd8nE1Rt Ch5G6

| ogi nShel | : /bin/bash

ui dNunber: 783

gi dNunber: 1000
honeDirectory: /home/guest1
gecos: Guest Account

sn: Account

mai |l : jerry@lainjoe.org

To inform the Postfix daemons that they should read the alias map from an LDAP directory, add the following entry
to the server's main.cf:

alias_maps = |dap: | dapalias

Thel dap keyword denotes the type of lookup table; the | dapal i as string is the name of the table. This name is
used as a prefix for parameter names; it identifies which settings are associated with this table.

After specifying that Postfix should look up alias information from the directory, you have to define several
parameters that tell Postfix how to search the directory. These should be familiar by now. The most common
settings include the LDAP server name (server _host), the search base (sear ch_base), the search scope
(scope), the search filter (query_fil ter), and the resulting attribute value to return (resul t _attri but e). Each
of these parameters is prefaced by the LDAP table name (I dapal i as_). Add these definitions to main.cf:

Parameters for LDAP alias map

| dapal i as_server_host = local host

| dapal i as_search_base = ou=peopl e, dc=pl ai nj oe, dc=org
| dapal i as_scope = sub

| dapalias_query_filter = (uid=%)

| dapalias_result_attribute = nai

You can test the alias table lookup using the postmap(1) utility to verify that mail to the user guestl will be
forwarded to the mail account at jerry@plainjoe.org:

$ postmap -q guestl |dap:|dapalias
jerry@l ainjoe.org

After starting the Postfix daemons (/usr/sbin/postfixstart), you can test your configuration further by sending a
test message to guestl@garion. This slapd log entry (which comes from a logging level of 256) proves that Postfix
did query the server using the filter "(ui d=guest1) ":

Aug 15 10:53: 37 ldap sl apd[6728]: conn=24 op=1 SRCH
base="ou=peopl e, dc=pl ai njoe, dc=org" scope=2 filter="(uid=guestl)"

The following excerpt from the header of the delivered message shows that the message was delivered to
guestl@garion.plainjoe.org. However, the message was then forwarded to jerry @plainjoe.org, as specified by the
value of the mai | attribute for the guestl account:

Ret ur n- Path: <r oot @l ai njoe. or g>
Del i vered-To: jerry@pl ai nj oe.org
Recei ved: from XXX, XXX, XXX, XXX ([XXX. XXX. XXX. XXX] hel o=gari on. pl ai nj oe. or g)
by gamma.junpserver.net with esmp (Exim 3.36 #1)
id 18ML.Sc- 0003t j -00
for jerry@lainjoe.org; Wed, 11 Dec 2002 01:39:14 -0600
Recei ved: by garion. pl ai njoe.org (Postfix)
i d 15CA23FB62; Tue, 10 Dec 2002 11:40:23 -0600 (CST)
Del i ver ed-To: guest1@arion. pl ai nj oe. org
Recei ved: by garion. pl ainjoe.org (Postfix, fromuserid 0)
i d FO42E3FB69; Tue, 10 Dec 2002 12:40:22 -0500 (EST)
To: guest 1l@ari on. pl ai nj oe. org
Subj ect: testing Postfix/LDAP | ookups
Message- 1 d: <20021210174022. FO42E3FB69@yar i on. pl ai nj oe. or g>
Dat e: Tue, 10 Dec 2002 12: 40:22 -0500 (EST)
From root@l ai njoe.org (root)

There are many possibilities beyond the simple example presented here. Your query_filter used only a single
attribute, but nothing prevents the use of more complex filters that match on multiple attributes. Furthermore,
many additional LDAP parameters allow you to fine-tune the way Postfix interacts with the directory. Table 7-7

gives a complete listing of all LDAP-related Postfix parameters as well as the default setting for each one.

Table 7-7. Postfix LDAP parameters

Parameter

Default

Description

bi nd

yes

Defines whether an LDAP bind request should
be issued prior to performing the query. This
value must be yes or no.

bind_dn

The DN used when binding to the LDAP
directory.

bind_pw

The clear-text password used when binding to
the directory using the bi nd_dn value.

cache

no

Determines whether to enable client-side
caching of LDAP search results, as described in
theldap_enable_cache(3) manpage.

cache_expiry

30 seconds

Defines the cache expiration timeout when
cache=yes.

cache_si ze

32 KB

Specifies the size of the LDAP cache when
cache=yes.

der ef er ence

Controls whether Postfix should dereference
aliases when searching the directory. Possible
values are 0 (never), 1 (when searching), 2
(when locating the base object for the search),
and3 (always).

domai n

none

A list (possibly a table lookup) of domain
names that restricts when a query is made.
This means that a local "user" (with the @ . . .
) will not be queried, nor will any email address
that does not match one of the domains listed.
For example:

| tabl e_domain pl ai nj oe.
org, hash:/etc/ postfix/ noredomains

query_filter

(nmai | accepti nggener al i d=9%)

The RFC 2254-style LDAP search filter.

The attribute value that should be read as a

result_attribute mai | drop .
- result of the query_filter.
scope sub The scope of the directory search; must be one
ofsub,base, or one.
sear ch_base none The DN that acts as the base search suffix for
the query.
The hostname of the LDAP server to which
queries should be submitted. The value is of
server_host | ocal host the form
host name[:port][,host nane[:port],
].
The port on which the server _host is listening
server_port 389 (unless overridden by the host name:port

syntax).

special _result_attribute

none

Allows administrators to define an attribute
that returns DNs from an LDAP search. If this
value is present in the entry returned by a
successful search, another query is issued using
the returned DN as the sear ch_base.

timeout

10 seconds

The maximum amount of time, in seconds, that
can elapse before the search is abandoned.

7.3.3 Exim

The Exim MTA is another Sendmail alternative. It was first developed in 1995 by Dr. Philip Hazel while at
Cambridge University. For the full details on configuring Exim, Philip Hazel's book, Exim:TheMainTransferAgent
(O'Reilly), provides an excellent tutorial on the various configuration details.IL1 1 you are not familiar with Exim, it
is a good idea to visit http://www.exim.org/ to obtain an overview of Exim's mail architecture. We will be looking
at Exim 4.10.

[11 At the time of this writing, Hazel's book covers Exim 3. The current release discussed in this chapter is
Exim 4. There have been some substantial changes between the two versions.

Like Sendmail and Postfix, Exim supports various types of file and database lookups, such as mySQL, Berkeley
DBM, and LDAP. In its default form, the Exim Makefile supports only linear searches in files (Isearch) and database
lookups (dbm). To enable LDAP lookups, a handful of Makefile variables must be set. These variables are
presented in Table 7-8.

Table 7-8. Exim LDAP-related Makefile variables

Variable Description

L OOKUP_LDAP This variable must be set to yes to include LDAP lookup support in the exim binary.

These variables provide a means of supplementing the existing CFLAGS and LDFLAGS variables
LOOKUP | NOLUDE when building Exim. To support LDAP lookups, they must specify the locations of include files
- and LDAP libraries. For example:

LOOKUP_LIBS 1| ookuP 1| NCLUDE=- 1/ opt /1 dap/ i nel ude

LOCKUP_LI BS=- L/ opt/ I dap/1ib -I11dap -I1 ber

This variable defines which LDAP client libraries will be used. Possible values are UM CHI GAN,
OPENLDAP1,0PENLDAP2 ,NETSCAPE, and SCLARI S.

LDAP_LI B_TYPE

Build the mail server with the following LDAP settings in Exim's Local/Makefile:

I ncluded in Exim s Local / Makefile to enabl e LDAP | ookup support
LOOKUP_LDAP=yes

LOOKUP_I NCLUDE=-1 /[usr/ 1l ocal /i ncl ude

LOOKUP_LIBS=-L/usr/local/lib -1ldap -I1 ber

LDAP_LI B_ TYPE=OPENL DAP2

It is a good idea to verify that the OpenLDAP libraries have been linked to the exim binary using some type of tool,
such as Idd(1), to view linking dependencies:

$ I dd /usr/exim bin/exim
libresolv.so.2 =>/lib/libresolv.so.2 (0x40026000)
libnsl.so.1 => /lib/libnsl.so.1 (0x40037000)
libcrypt.so.1 =>/1lib/libcrypt.so.1 (0x4004b000)
| ibdb-4.0.s0 => /lib/libdb-4.0.so0 (0x40078000)
l'i bldap.so.2 => [usr/local/lib/libldap.so.2 (0x4010f 000)
l'iblber.so.2 => Jusr/local/lib/liblber.so.2 (0x40146000)
libc.so.6 =>/1lib/libc.so. 6 (0x40153000)
libdl.so.2 =>/lib/libdl.so.2 (0x4027b000)
libsasl 2.s0.2 => /usr/lib/libsasl 2.s0.2 (0x4027e000)
libssl.so0.2 => /lib/libssl.so.2 (0x40290000)
libcrypto.so.2 =>/lib/libcrypto.so.2 (0x402bd000)
/[lib/ld-linux.so0.2 => /lib/ld-Iinux.so.2 (0x40000000)

Once the Exim binaries have been built and installed (we'll assume that the default location of /usr/exim/ is the
installation directory), the next step is decide what data should be retrieved from the directory. Our discussion of
Postfix defined a useful schema for retrieving mail aliases for local users; let's see how this same schema applies to
Exim. The schema makes use of the ui d attribute type (posi xAccount) as the key and the mai | attribute type

(i net OrgPerson) as the resulting value. For completeness's sake, here's the LDIF entry for a user account with a

http://www.exim.org/

mail alias; it's the same entry you used for the Postfix server. All mail that would be delivered to the local user
namedguestl should be forwarded to the address jerry @plainjoe.org.

User account including a nail alias
dn: uid=guest 1, ou=Peopl e, dc=pl ai nj oe, dc=or g
uid: guestl

cn: Guest Account

obj ectCl ass: posi xAccount

obj ectCl ass: inetOrgPerson

user Passwor d: { CRYPT} Fd8nE1Rt Ch5G6

| ogi nShel | : /bin/bash

ui dNunber: 783

gi dNunber: 1000

homeDirectory: /honme/guestl

gecos: Guest Account

sn: Account

mail: jerry@lainjoe.org

Exim searches are defined using the dat a keyword. The general syntax for a table lookup is:
data = ${lookup db_type {db_search_parameters}}

LDAP queries can use a db_t ype of:

| dap

Indicates that the search will return a single value and that Exim should interpret multiple values as a failure
| dapdn

Specifies that the search will match one entry in the directory and that the returned value is the DN of that
entry
| dapm

Defines searches that may return multiple values

To inform Exim that local al i as data should be retrieved from an LDAP directory, you must configure an
appropriateredirect router. To do so, you create an | dap_al i ases entry in /usr/exim/configure:

Alias Director, which retrieves data froman LDAP director. The name
"| dap_al i ases" has been arbitrarily chosen.
| dap_al i ases:
driver = redirect
data = ${l ookup I dap \
{ I'dap://1dap. pl ai njoe. org/\
ou=peopl e, dc=pl ai nj oe, dc=or g\
?mai | ?sub?(ui d=${| ocal _part})} }

Thedri ver keyword is used to define the type of router being implemented. In contrast to both Sendmail and
Postfix, Exim uses an LDAP URL to define the LDAP host, port, search base, retrieved attribute values, scope, and
filter. The line continuation character (\) has been used to make the line more readable. The variable

${l ocal _part} is the username extracted from the local recipient's mail address (for example, the

${l ocal _part} of jdoe@garion.plainjoe.org would be jdoe). So you can read the query specification as: "Using
the LDAP server at Idap.plainjoe.org (on the default port of tcp/389), perform a substring search of the ui d
attribute, searching for the local part of the email address, and returning the value of the mai | attribute. Perform
the search with a search base of ou=peopl e, dc=pl ai nj oe, dc=or g."

o) It is possible to define multiple servers for LDAP queries with the | dap_def aul t _servers
£ parameter in Exim's configure file. This option accepts a colon-separated list of servers and
i
w f;- ports that are tried one by one until a server is successfully contacted. This setting would

utilize two directory servers, Idapl and Idap2, for fault tolerance purposes:

| dap_defaul t _servers = | dapl::389: | dap2:: 389

UsingExim's address-testing mode, you can verify that mail sent to guestl@garion will indeed be forwarded to
jerry@plainjoe.org:

root# exim-v -bt guestl@arion
jerry@l ainjoe.org
<-- guestl@ari on. pl ai nj oe. org
deliver to jerry@lainjoe.org
router = dnsl ookup, transport = renpte_sntp
host plai njoe.org [XXXx.XXX.XXX. XXX]

The log file for slapd (I ogl evel 256) shows that the lookup for (ui d=guest 1) was performed as expected:

Aug 16 17:05:09 |dap sl apd[3574]: conn=36 op=1 SRCH
base="ou=peopl e, dc=pl ai nj oe, dc=org" scope=2 filter="(uid=guestl)"”

The LDAP URL format does not allow any space for defining credentials to be used when binding to the server. The
default behavior is to perform an anonymous bind and not request any limits on search results. Exim can request a
simple bind using credentials specified by the user and pass options. Table 7-9 lists several parameters that can be
included in the LDAP query as opt i on=val ue to specify authentication information as well as search limits.

Table 7-9. Additional Exim LDAP query parameters

Parameter Description

user The DN used when binding to the directory server

pass The clear-text password used when binding to the directory server with a non-empty user
size The upper limit on the number of entries returned from the lookup

time The upper limit, in seconds, on the time to wait for a response to a lookup

To use these additional parameters when performing an LDAP lookup, they must preceed the URL in the data
string. For example, to bind to the LDAP server as the user cn=Mai | Adm n, dc=pl ai nj oe, dc=or g using the
passwordsecr et , you would define the following query:

data = ${lookup ldap \
{ user="cn=Mail Adm n,dc=pl ai nj oe, dc=or g"\
pass=secret \
| daps: / /1 dap. pl ai nj oe. org/\
ou=peopl e, dc=pl ai nj oe, dc=or g\
?mai | ?sub?(ui d=${1 ocal _part})} }

Because Exim uses LDAPv2 binds, it cannot take advantage of SASL authentication or the StartTLS LDAv3
extension. However, it can understand URLs that use Idaps://. This is important when sending a DN and password
to the directory server in clear text.

It should also be mentioned that because the pass value is stored in clear text, it is preferable to preface the data
line with the hi de keyword (i.e., hi dedat a= . . .) directive so that the line cannot be displayed by ordinary
users using the exim -bP command.

[Team B] [ereviovs)

[Team LB] [<ereviovs)

Chapter 8. Standard Unix Services and LDAP

InChapter 6, we examined the possibilities of integrating an LDAP directory into basic authentication services by
using the PAM and NSS modules. In Chapter 7, we integrated LDAP into the network mail infrastructure in both
clients and servers. This chapter takes LDAP integration a step further by exploring how other standard Unix
services can make use of our directory. The applications we will explore are Apache, FTP (ProFTPD), Samba,
RADIUS (FreeRadius), DNS (BIND 9), and printing (LPRng and LPD). It is impossible to cover all the services a
network may provide, but by showing a few concise, real-world solutions to common problems, | hope to give you
tools and ideas that you can apply to any network applications you encounter in the future.

The applications discussed in this chapter will communicate directly with the LDAP directory. Servers that do not
possess native LDAP support can use the PAM and NSS solutions presented in Chapter 6.

[Team Lig] [ersvious]

[Team LB] [<ereviovs)

8.1 The Directory Namespace

Although we will eventually need to modify it, we will start by using the namespace developed in Chapter 6 and
Chapter 7. Our directory root is dc=pl ai nj oe, dc=or g, and user-related information is stored beneath the peopl e
organizational unit directly below the root, as shown in Eigure 8-1. The group organizational unit contains any
posi X& oup entries as well as any administrative group (groupd Nanmes) objects used in access control rules for
the directory.m We will need to add additional organizational units, which we will do later in this chapter.

[11 Examples of using administrative groups in ACLs and the gr oupof Nanmes object can be found in Appendix
E.

Figure 8-1. Initial namespace for the directory used in this chapter

de=plainjoe de=arg

Sminstrative gmui‘ls . ' —)
and posisaroups applicatian data

[Team LiB] [« ereviovs)

[Team LB] [<ereviovs)

8.2 An FTP/HTTP Combination

The first set of services that we will explore is the combination of the ProFTPD server (http://www.proftpd.org/)
and Apache (http://www.apache.org/). In this scenario, we would like to build a new web server and allow users to
publish web content using an FTP client. All user and group accounts already exist in the LDAP directory, but just to
make things interesting, assume that your theoretical web server platform cannot make use of either PAM or NSS
to access any of this information.

The solution we would like to deploy is illustrated in Figure 8-2. Users should be able to put files into
~<username=>/public_html| on the web server using FTP. ProFTPD must authenticate user connections using
information stored in the LDAP directory. These files should then be accessible via a web browser at
http://www.plainjoe.org/~<username=>. Because the server is not using an nss_ldap library, Apache must obtain
the home directory path for users directly from the LDAP server.

Figure 8-2. Interaction between ProFTPD, Apache, and the LDAP directory on www.plainjoe.org

W, plainjoe.ong tap.plainjoe.ong
hame directory amd
! ! aecoun! infarmation
i - i directory
uplaad fles o it pladjoe. gy ~tser
~puililic_htmd

FIP dient HTTP dient

Two add-ins, both developed by John Morrissey (http://www.horde.net/—~jwm), will help you implement your new
web server. We will begin by looking at ProFTPD's LDAP features.

8.2.1 ProFTPD

Morrissey'sLDAP authentication module (mod_Idap) is included with current releases of the ProFTPD server. 21

[21 ProFTPD's mod_ldap module should not be confused with any of Apache's modules of the same name
(http://modules.apache.org/).

Our focus will be on the ProFTPD Release v1.2.7. Building mod_Idap is controlled by an option to the configure
script (—with-modules=mod_Ildap). After extracting the source code, the following commands build the binaries
and tools to include support for mod_Idap:

$./configure --with-nodul es=nod_| dap
$ make
$ /bin/su -c "nmake install"

You can specify multiple modules as arguments to the —with-modules option by separating each module name in
the list with a colon (e.g., —with-modules=mod_ldap:mod_linuxprivs). For more information on the various
modules supported by the ProFTPD package, refer to the documentation included with the software or the online
versions at http://www.proftpd.org/docs/.

ProFTPD's-I command-line option can be used to verify that the mod_ldap module was included in the final binary.
The actual list of modules may vary depending on the OS used during compilation, but at a minimum, you must
see mod_ldap listed:

http://www.proftpd.org/
http://www.apache.org/
http://www.plainjoe.org/
http://www.horde.net/~jwm
http://modules.apache.org/
http://www.proftpd.org/docs/

$ proftpd -1

Conpi | ed-in nodul es:
nod_cor e.
nmod_aut h.
nod_xf er.
nmod_si t e.
nmod |'s.c
nod_uni xpw. ¢
nod_| og.c
nod_| dap. ¢

O o000

Thesample-configurations/ subdirectory included in the source distribution contains settings for several common
scenarios. We'll use the following proftpd.conf file as starting point. The parameters are fairly self-explanatory, but
you can review the configuration documentation included in the docs/ directory of the proftpd source distribution if
you need more information.

#H B R R R R A R
ProFTPD configuration file

(/usr/local/etc/proftpd. conf)

G obal directives

Hit BHHEH TR R R R H R R R AR

ServerType st andal one
Def aul t Server on

Por t 21

Unask 022

User nobody
Group nobody

<- LDAP parameters will go here. ->

Normally, files should be overwitabl e.
<Drectory /[*>

All owOverwrite on
</Directory>

Your first step is to restrict a user to her individual ~/public_html subdirectory when connecting. We will assume
that this directory already exists. The Def aul t Root option defines the path that will be passed to the chr oot ()

call by the proftpd server.

Limt users to their web directory.
Def aul t Root ~/ public_htm

The next step is to instruct the proftpd daemon to use the mod_ldap module for authentication. The LDAPDoAut h
keyword accepts up to three arguments. The first either turns the module on or off. The second argument is the
base suffix to use when searching the directory. The final argument allows an administrator to define a customized
search filter. In the absence of an explicit filter string, the default of

(& ui d=%u) (obj ectcl ass=posi xAccount)) is used.

Limt users to their web directory. Use the default search filter.
LDAPDoAut h on "ou=peopl e, dc=pl ai nj oe, dc=or g"

Of course, you also must define the hostname of the directory server:

Define the LDAP server to contact.
LDAPSer ver | dap. pl ai nj oe.org

By default, the ProFTPD daemon uses an anonymous bind when searching an LDAP directory. However, if you
include the LDAPDN nf o directive in the configuration file, the daemon uses a DN and password to bind to the
LDAP server. We'll stick with anonymous binds since Chapter 6 allowed nss_Ildap clients to enumerate account
information this way.

Themod_Ildap module supports two means of authenticating user connections once their directory entries are
located. The LDAPAut hBi nds directive controls which method is used. If it is set to of f , mod_Idap searches the

LDAP server anonymously (or uses a simple bind as the LDAPDN nf o0 entry) to retrieve all of the user information
including the user Passwor d attribute. The module then hashes the password entered by the user (if necessary)
using the local system's crypt () function and compares it to the value obtained from the directory search. This
means that the user Passwor d must be stored in either { CLEAR} or { CRYPT} formats.

Thepreferred and default method (LDAPAut hBi ndson) authenticates the connecting user by binding to the
directory server. In this case, ProFTPD locates the DN of the connecting user by searching the directory (either
anonymously or as the LDAPDN nf 0). However, the user Passwor d attribute is never requested from the LDAP
server under this configuration. The module then binds to the directory again, using the user's DN and the
password that the user entered. If this bind succeeds, ProFTPD considers the user to be authenticated.

To configure ProFTPD for the preferred authentication method, add the following line to proftpd.conf:

Require that an incomng user can successfully bind to the LDAPServer.
LDAPAut hBi nds on

The final hurdle to overcome is to inform proftpd how to resolve UIDs and GIDs when listing files without using the
standardget pwui d() and get grgi d() calls. The LDAPDoUl DLookups and LDAPDoGl DLookups directives
instructproftpd to query the directory server using the specified base suffix. Each directive accepts an optional
parameter if you find it necessary to override the respective default search filters of (& ui dNurber =UN X

ui d) (obj ect cl asses=posi xAccount)) and (& gi dNunber =UNI Xgi d) (object cl asses=posi xGroup)).
These filters work well with your directory, so there is no need to change them.

Look up U Ds and A Ds in the directory.
LDAPDoG DLookups on "ou=group, dc=pl ai nj oe, dc=or g"
LDAPDoUI DLookups on "ou=peopl e, dc=pl ai nj oe, dc=or g"

Assuming that you have a valid user named kristi in the directory, you can verify that mod_Ildap and proftpd are
working by connecting to the server (www.plainjoe.org) and uploading a file:

$ ncftp -u kristi -p testpass www plainjoe.org

NcFTP 3. 1.3 (Mar 27, 2002) by Mke @ eason (ncftp@cftp.conj.
Connecting to 192.168. 1. 100...

ProFTPD 1.2.7 Server (ProFTPD Default Installation) [ww.plainjoe.org]
Logging in .

User kristi |ogged in.

Logged in to local host.

ncftp / > put index.htm

i ndex. html : 1.38 kB 69.43 kB/'s
ncftp/ >1s -I
STWT--T-- 1 kristi ftpusers 464 Dec 18 2002 index.htn

Table 8-1 lists the entire set of directives for mod_Idap.

Table 8-1. Parameters for the ProFTPD mod_Ildap 2.7 module

Directive Default Description

Should the connecting user be authenticated by binding to the
directory server using the located DN and the user's password

LDAPAut hBi nds on (on), or should the module hash the password locally and compare
it with the user Passwor d attribute obtained from the directory
(off)?

L DAPDef aul t Aut hSchene crypt Specifies the'hashing scheme for passwords that are not prefixed
by a type string ({ }). Possible values are crypt and cl ear .

L DAPDef aul t G D None S!oecifies the de_fault Qnix GID_ to be assigned to the user if the
gi dNunber attribute is unavailable.
Specifies the default Unix UID to be assigned to the user if the

LDAPDef aul t Ul D :

None ui dNunber attribute is unavailable.

LDAPDN nf o o Defines the DN and password to use when binding to the directory
server for searches.

LDAPDoAut h of f Should mod_ldap be enabled for authentication?

LDAPDoG DLookups of f Shoul_d mod_ld_ap attempt to res_olve Glp numbers to names by
querying the directory for matching posi x@ oup entries?

LDAPDoUI DLookups of f Shoulpl mod_ld_ap attempt to resplve UII_D numbers to names by
querying the directory for matching posi xAccount entries?

L DAPFor ceDef aul t @ D of f Force§ the .GID of all conr?ected users to thfe LDAPDef aul t Gl D,
even if a gi dNunber attribute can be obtained.

L DAPFor ceDef aul t U D of f Forces the UID of all connected users to the LDAPDef aul t Ul D,

even if a ui dNunber attribute can be obtained.

Instructs mod_Idap to create the user's home directory (from the
of f homeDi r ect ory attribute) if it does not already exist. The
directive also accepts a second parameter that sets the mode of
the new directory.

LDAPHonedi r OnDenmand

Specifies additional subdirectories to be created in the event that
LDAPHomedi r OnDermandSuf fi x| LDAPHonedi r OnDenmand has been enabled. Multiple directories can
be included in a whitespace-delimited list.

LDAPNegat i veCache of f Instruc.ts mod_ldap to cache negative responses to UID/GID
resolution attempts.
LDAP client
LDAPQuer yTi meout library Specifies the maximum amount of time, in seconds, to wait for a
search to complete.
default
LDAPSear chScope subtree Defines the LDAP search scope as onel evel or subtree.

Specifies the hostname of the directory server. An alternative to
LDAPSer ver I ocal host port 389 can be defined using the syntax ser ver :por t . Multiple
servers can be specified; separate server hostnames by spaces.

This parameter is available only if mod_ldap.c has been modified
to define USE_LDAPV3_TLS. If enabled, mod_ldap will use the
LDAPUseTLS of f S_tartTLS extension when contacting the LDA_P server. If the
directory does not support TLS, mod_Idap will downgrade to an
unencrypted channel and simply report failure to the proftpd
server.

8.2.2 Apache

Now that users can upload files to your web server, Apache must be configured to resolve URLs such as
http://www.plainjoe.org/~kristi. Traditionally, Apache administrators have used a subdirectory named public_html
in home directories to provide a simple mechanism for users to publish personal web pages. This associates the
tilde (=) with a home directory by asking the operating system to provide the details about the user from the local
system password file, NIS map, or LDAP directory via NSS modules.

Because we have chosen not to implement any nss_ldap functionality on the server, we will have to use another
means of instructing Apache how to determine a user's home directory location. Morrissey's mod_Ildap_userdir
module allows us to do just that.

http://www.plainjoe.org/~kristi

This module obtains the path to a user's home directory by searching an LDAP directory for a posi xAccount entry
with a matching ui d value. Our LDAP directory already supports the schema required for nod_| dap_userdir, so
the new work to be done is localized to the web server. As usual, we focus only on the aspects of Apache needed
to integrate the server with an LDAP directory. Full coverage of Apache configuration is well beyond the scope of a
single chapter, as is the case with all of the server packages discussed in this chapter. For more information on
Apache and its httpd.conf, refer to Apache:TheDefinitiveGuide, by Ben and Peter Laurie (O'Reilly).

The first step is to download the latest version of the module from

http://www.horde.net/~jwm/software/mod Idap userdir/. Building mod_Idap_userdir requires adding only a single
option (—with-activate) to the configure script. However, unless the Apache eXtenSion tool is located in a directory
in your $PATH, it will also be necessary to set the absolute path to the apxs binary. These are the steps | used to
build the module for an Apache 1.3.23 installation, although an Apache 2.0 installation is no different:

$./configure --wth-activate --wi th-apxs=/usr/shin/ apxs

$ make
$ /bin/su -c "make install"
[usr/sbin/apxs -i -a nod_| dap_userdir.so

[activating nodule 'ldap_userdir' in /etc/httpd/ conf/httpd.conf]
cp nod_| dap_userdir.so /usr/lib/apache/ nod_|dap_userdir.so
chrmod 755 /usr/|ib/apache/ nod_| dap_userdir. so

cp /etc/ httpd/conf/httpd.conf /etc/httpd/ conf/httpd. conf. bak

cp /etc/ httpd/conf/httpd.conf.new /etc/httpd/ conf/httpd. conf
rm/etc/ httpd/conf/htt pd.conf. new

The build process will fail if configure cannot locate the necessary LDAP libraries and header files. The two options,
—with-sdk-headers=<path> and —with-sdk-libs=<path>, can be used to specify the path to the LDAP SDK
header files and libraries. The final makeinstall command should copy the compiled library to the directory
containing the other installed Apache modules (normally /usr/lib/apache/) and activate the module in httpd.conf.
Here is the LoadModul e line created in Apache's configuration from the installation (the comments are my own):

Activate the LDAP userdir module (this nmay al so require an AddMbdul e

nmod_| dap_userdir.c directive later in the file depending on the server's
configuration).

LoadMWbdul e | dap_userdir_nodule /usr/lib/apache/nod_| dap_userdir. so

The module itself has seven directives, which are presented in Table 8-2. Your web server uses four of these
directives:

<If Modul e nod_| dap_userdir.c>

LDAPUser Di r Server | dap. pl ai nj oe. org
LDAPUser Di r Sear chScope subtree
LDAPUser Di r BaseDN ou=peopl e, dc=pl ai nj oe, dc=org
LDAPUser Di r public_htm
</1 f Modul e>

Table 8-2. Directives for mod_Idap_userdir

http://www.horde.net/~jwm/software/mod_ldap_userdir/

Directive Default Description

LDAPUser Di r publ i c_ht m The e_xpected name of the
subdirectory.

The hostname of the LDAP directory
server.

LDAPUser Dir Server None

The DN and password to be used to
LDAPUser Di r DNI nf o None bind to the directory. The password
should be given in clear text.

LDAPUser Di r BaseDN The bgse search suffix to use when
searching the directory.

The RFC 2254-compliant LDAP search
LDAPUser DirFilter (& ui d=%) (obj ectcl ass=posi xAccount)) filter to use when querying the

directory.

The scope of the LDAP search; can
be a onel evel or subtree.

Whether to use the StartTLS
extended operation (on) or an
unencrypted connection (of f) when
searching the directory.

LDAPUser Di r Sear chScope|subt r ee

LDAPUser Di r UseTLS of f

The values for each directive in your configuration are fairly self-explanatory. LDAPUser Di r Server,

LDAPUser Di r Sear chScope, and LDAPUser Di r BaseDN set the standard LDAP search parameters: the server's
hostname (Idap.plainjoe.org), the search scope (subt r ee), and the base suffix

(ou=peopl e, dc=pl ai nj oe, dc=or g). The search filter is not set explicitly because the default filter string,

(& ui d=%) (obj ectcl ass=posi xAccount)) , works nicely with your directory; it matches the current username
against the ui d attributes of all posi xAccount objects.

By default, Apache binds to the directory anonymously. However, you could specify a DN and password to be used
when binding to the LDAP server by defining the LDAPUser Di r DNI nf o parameter. There is no need to avoid
anonymous searches in this case because the ui d and homeDi r ect ory attributes have already been made
available anonymously to support other services such as ProFTPD.

Once all of these pieces are in place, you can verify that the module is working correctly by viewing the index.html
file uploaded to ~kristi/public_html in the previous section. If there are any errors, the two places to look for clues
are Apache's error_log and OpenLDAP's syslog messages.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

8.3 User Authentication with Samba

This book has concentrated on Unix services, with only a few exceptions; email applications often cross platform
boundaries, as do requirements for file and printer sharing. The Samba project (http://www.samba.org/) has
become a staple for administrators seeking to integrate Unix file and print servers with Windows clients. Samba is
a suite of programs that implement the server portion of the SMB (Server Message Block) protocol, later renamed
CIFS (Common Internet File System).

Samba includes several client programs and administrative tools in addition to its server components. Adequate
coverage of Samba is well beyond the scope of this book. For more information about Samba, see SamsTeach
YourselfSambain24Hours, Second Edition, by Gerald Carter (Sams Publishing), or UsingSamba, Second Edition,
by Jay Ts, Robert Eckstein, and David Collier-Brown (O'Reilly).

To support the challenge/response authentication methods used by Microsoft clients, Samba requires a list of
hashed passwords separate from the normal Unix account information stored in /etc/passwd (or in the

posi xAccount object class). This collection of LanManager and Windows NT password hashes is normally stored in
a file named smbpasswd(5); the format of each entry is:

user name: ui d: LM HASH: NT_HASH: account fl ags: ti mestanp

Samba'ssmbpasswd file has several disadvantages for sites with many users:

e Lookups are performed sequentially. When servicing a domain logon request from a Windows NT/2000/XP
client, there are a minimum of two lookups. These lookups can be a performance bottleneck.

e Attempts at using a single smbpasswd file for multiple standalone servers requires the administrator to use
external tools, such as a combination of rsync(1) and ssh(1) or scp(1), to replicate the file. This solution also
requires that the set of Unix users and groups be synchronized between the servers, perhaps using the
methods outlined in Chapter 6.

e The format of the smbpasswd file limits the number of attributes that can be maintained for each user. When
Samba is acting as a Windows Primary Domain Controller, there are many additional fields, such as the
location of a user's roving profile, that should be maintained on an individual basis.

8.3.1 Configuring Samba

All of these deficiencies can be addressed by moving the information from a local, flat file into sanmbaAccount
objects in an LDAP directory. The LDAP support in Samba 2.2.7a must be enabled at compile time using the
—with-ldapsam configure script option. 3

[31 The LDAP support in Samba 2.2 has no relationship to the LDAP support in a Windows 2000 domain or in
Windows 2000 Active Directory servers.

This support requires the OpenLDAP 2 client libraries to be present when compiling Samba. Here's a typical Samba
build:

root# ./configure --wth-Idapsam

<. . . output deleted . . . >

checking whether to use LDAP SAM database . . . yes
root# make

root# meke install

After installing the LDAP-enabled version of the Samba, the next step is to create a working configuration file

(smb.conf) for the smbd(8) and nmbd(8) binaries. The following smb.conf creates a single file share named
[files]:

snmb. conf file for LDAP-enabl ed Sanba server
[ol obal]

http://www.samba.org/

net bi os nane = TASHTEGO

wor kgr oup = PEQUOD
security = user
encrypt passwords = yes

LDAPsam rel at ed passwor ds

| dap adm n dn = "cn=smbadm n, ou=peopl e, dc=pl ai nj oe, dc=or g"
| dap server = | dap. pl ai njoe.org
| dap ssl = start_tls
| dap port = 389
| dap suffix = "ou=peopl e, dc=pl ai nj oe, dc=or g"
The following is the default LDAP filter used if one is not explicitly defined.
| dap filter = " (& ui d=%J) (obj ectcl ass=sambaAccount))"
Define the file service to be shared.
[files]
pat h = /export/files
read only = no

If you've been following along, the LDAP-related parameters should be familiar. Table 8-3 provides descriptions of
the various parameters as well as the default value assigned to each option.

Table 8-3. Samba's LDAPsam smb.conf parameters

Parameter Default Description

The DN used by smbd when connecting to the LDAP
| dap server. This DN should be able to read all attribute
adm n dn values for sambaAccount entries, including

| nfiPasswor d and nt Passwor d.

| _dap (& ui d=%) (obj ect ¢l ass=sambaAccount)) The RFC 2254-compliant search f_ilter to use when
filter locating a user's Samba account information.

| dap port |636 The tcp port to use when contacting the LDAP server.
| dap | ocal host The FQDN of the directory server.

server

The parameter that specifies how smbd connects to
theLDAP server. The possible values are of f (do not
use encryption when communicating with the
directory),on (use LDAPS when contacting the
directory server), and start _t| s (use the StartTLS
command to establish an encrypted transport layer).

| dap ssl |on

| dap The base search suffix to use when querying the
suf fix directory.

Samba must obtain the Windows password hashes from the directory in order to authenticate a user using
encrypted passwords. Due to their security-sensitive nature, the hashes should never be retrievable by an
anonymous user. To bind to the host specified by the | dapser ver parameter, Samba requires a valid | dap

admi ndn value and a password. The clear-text password is not stored in Samba's configuration file (smb.conf is
often world-readable, so storing the password in this file would be pointless). Rather, the password is stored in the
secrets.tdb file located in /usr/local/samba/private/ by default. The password is still stored in clear text, but the
permissions assigned to this file should restrict read and write access to the superuser account.

Samba'ssmbpasswd(8) utility is normally used to perform duties such as manipulating user entries in the
smbpasswd(5) file, joining the Samba server to a Windows domain, and changing passwords for remote Windows
users. Use it to store the | dapadm ndn password by executing:

root# /usr/local /sanbal/ bin/ snbpasswd -w secr et
Setting stored password for "cn=snbadm n, ou=peopl e, dc=pl ai nj oe, dc=org" in secrets.tdb

Becausesecrets.tdb can be read or written only by root, you must execute this command as root. If the
smbpasswd command does not support the -w option, either LDAPsam support was not properly enabled when
compiling Samba, or a non-LDAP-enabled version of the tool exists in your $PATH.

Currently, the Samba server uses a simple bind when contacting the directory server to retrieve user information.
Given the access rights required by the | dapadm ndn account and the clear text-equivalent nature of the
LanManager and NT password hashes, it is strongly advised that the | dapssl parameter be left enabled or set to
use the StartTLS operation.

8.3.1.1 Configuring OpenL DAP

To store sambaAccount entries in the directory, your LDAP server must support the appropriate schema. Samba
developers provide a definition of the sanbaAccount schema for use with OpenLDAP 2 servers in the file
examples/LDAP/samba.schema (included in the Samba source distribution). Copy samba.schema to an appropriate
location, such as /usr/local/etc/openldap/schema/, and include it in the server's configuration by adding the
appropriatei ncl ude statements to the slapd.conf file. Two dependencies are noted at the beginning of the
samba.schema file: cosine.schema (for the ui d attribute) and inetorgperson.schema (for the di spl ayNane
attribute). After you've finished editing the schema portion of slapd.conf, it should look like this:

[usr/ | ocal /et c/ openl dap/ sl apd. conf

core.schema is required for all servers.
include /usr/local/etc/openldap/schema/core. schema

| ncl uded from Chapter 6
include /usr/local/etc/openldap/ schema/cosine.schem
include /usr/local/etc/openldap/schema/nis.schem

| ncl uded from Chapter 4
include /usr/local/etc/openldap/ schema/i netorgperson. schema

Dependenci es for sanba. schema: cosine. schema and i netorgperson.schema needed to
support --w th-Idapsamin Sanba
include /usr/local/etc/openldap/ schema/sanba. schema

Figure 8-3 shows attributes used by the sanmbaAccount object class. The Samba-LDAP-HOWTO file (also
distributed with the Samba source distribution) defines each attribute and its expected values. All of the attributes
are stored as ASCII string values (IA5String).

Figure 8-3. sambaAccount object class

nbject(lass: sambahconunt

Juid:

rid:

on:

ImPassword: pwdCanChange:

P assword: pwdhusstChangs
pwsdLastSet: anctflags:
laganTime: displaybame:
[ngaffTime: smbHame:
kickoffTime: hemmelirive:
useriorkstations; SCripthath:
primaryGrouglD; profilefath:
damain: description:

In addition to the schema changes, you must add a new access control rule to prevent normal users (authenticated
or not) from retrieving LanMan/NT password hashes (the | nPasswor d and nt Passwor d attributes) from the
directory. Since OpenLDAP never uses these attributes for authenticating a bind request, there is no reason for a
user to access these attributes. The other attributes of the sanbaAccount object class do not contain any sensitive
information, so it doesn't matter who reads them. The first and last slapd.conf ACLs are repeats from Chapter 6.
The second access rule denies all users except smbadmin access to the | nPasswor d and nt Passwor d attributes.
This ACL could be modified to allow users to change their own password hashes without any adverse security
affects. The third allows the cn=snbadni n user to write to all entries in the ou=peopl e subtree. You could tighten

down this ACL by restricting the smbadmin's access to the attributes of the a sanmbaAccount object only, but the
simpler version is presented here:

Previous ACL from Chapter 6
access to attrs=userPassword
by self wite
by * auth

Don't let users snoop W ndows passwords.

access to attrs=lnPassword, nt Password
by dn="cn=snbadm n, ou=peopl e, dc=pl ai nj oe, dc=org" wite
by * none

Al low the Samba adm n user to add new entries and nodi fy exi sting ones.
access to dn. subtree="ou=peopl e, dc=pl ai nj oe, dc=or g"

by dn="cn=snbadm n, ou=peopl e, dc=pl ai nj oe, dc=org" wite

by * read

Previous ACL from Chapter 6
access to dn. subtree="ou=group, dc=pl ai nj oe, dc=or g"
by * read

I have already added Samba's | dapadmi ndn to smb.conf, but have yet to explain what its directory entry looks
like. Samba will bind to the directory as the user, so it must possess a user Passwor d attribute value. However, it
is not necessary that this entry have a numeric UID or other POSIX attribute. The per son structural object class in
OpenLDAP'score.schema file includes just the attributes you need: a name and a password. Figure 8-4 displays
the required and optional attributes held by a per son in the directory.

Figure 8-4. person object class

objectilassperson

e
Fequived — o
userPassward:
5 telephonefumbern:
Optional— saeso:

description

A simple LDIF representation of the cn=snbadm n entry would be:

dn: cn=smbadni n, ou=peopl e, dc=pl ai nj oe, dc=org

obj ectcl ass: person

cn: snbadm n

sn: snbadnmn

user Passwor d: { SSHA} xDG3/ Cf j 7TATgJ9yPOexS2I GD+i nf JqQ

In this case, the user Passwor d attribute holds the SSHA hash of the passphrase string "secret.”

You have now finished all the configuration details, and are ready to add a real sanbaAccount entry. When you've
done this, you can start testing.

8.3.2 Adding and Using a sambaAccount

Just as entries in the smbpasswd(5) file supplement entries in the local system passwd file, the sambaAccount
entries in the directory supplement the basic Unix account information. smbd always queries the server's operating
system for attributes such as the Unix home directory and user ID. By using both the posi xAccount and the
sanmbaAccount auxiliary object classes, you can store all of this information in your directory.

The only requirement Samba places on sanbaAccount or smbpasswd entries is that the operating system must
provide a valid set of Unix attributes for the user (e.g., a Unix UID and primary GID). The example presented here
uses the directory structure presented earlier in this chapter and therefore assumes that a posi xAccount entry

already exists for all valid Unix users.

To add the sanbaAccount information required for validating Windows users, we turn to the smbpasswd(8) utility.
The-a option specifies the username of the account to be added, and the -s option specifies the initial password.
For example, to add a user named kristi, execute the following command as root:

root# snbpasswd -a kristi -s testpass

LDAP search " (&(ui d=kristi) (objectclass=sanmbaAccount))"
returned O entries.

Added user kristi.

The message about the LDAP query returning O entries is normal. smbpasswd(8) initially looks for a preexisting
account with the specified username. Since you are adding a new account, this search returns O entries. The
resulting entry in the directory (with sanbaAccount attributes highlighted), including the preexisting

posi xAccount attributes, appears as:

dn: uid=kristi, ou=peopl e, dc=pl ai nj oe, dc=or g
obj ectCl ass: inetOrgPerson

obj ectCl ass: posi xAccount

obj ectCl ass: sanbaAccount

cn: Kristi Carter

cn: Kristi W Carter

sn: Carter

mai | : kcarter @l ai nj oe. org

| abel edURI: http://ww. plainjoe.org/~kristi
roomNunber: 102 Ransey Hal |

t el ephoneNunber: 222-555-2356

user Passwor d: { SSHA} 7e Xy EM+Q+1BVUGFz/ MOWUCONdov P3uM
| ogi nShel | : /bin/bash

ui dNunber: 781

gi dNunber: 100

homeDirectory: /home/kristi

gecos: Kristi Carter

uid: kristi

pwdLast Set: 1040186720

| ogonTine: 0O

| ogof f Ti me: 2147483647

kickoff Ti me: 2147483647

pwdCanChange: 0

pwdMust Change: 2147483647

rid: 2570

pri mryG oupl D 1201

| mPasswor d: 3AE6CCCE2A2A253F93E28745B8BF4BAG
nt Passwor d: 35CCBA9168B1D5CA6093B4B7D56C619B
acct Flags: [UX]

We can confirm that Samba can authenticate the new user by using smbclient:
$ snmbclient //tashtego/files -Ukristi% estpass

Domai n=[PEQUOD] C5=[Uhi x] Server=[Sanba 2. 2.7a]
snb: \>

[TeamiB] [<ereviovs)

[Team LB] [<ereviovs)

8.4 FreeRadius

TheFreeRadius server project (http://www.freeradius.org/) is the implementation of the Remote Authentication
Dial-In User Service (RADIUS) protocol used by many corporations and Internet service providers to authenticate
users connecting from remote locations. Complete coverage of FreeRadius or RADIUS servers goes beyond the
scope this chapter. RFC 2865 explains the details of the protocol. For a more practical look at RADIUS, you should
refer to the FreeRadius web site as well as RADIUS, by Jonathon Hassel (O'Reilly).

TheFreeRadius server daemon, radiusd, can use an LDAP directory in two different ways. First, it can use LDAP as
a data store for RADIUS attribute values. RADIUS attributes are defined by the RADIUS protocol and should not be
confused with LDAP attributes.[41 The only similarity between the two types of attributes is that both have names
and are used to store values. The FreeRadius administrator defines the mapping between RADIUS attributes and
the LDAP attributes used to represent them. We'll look at the configuration details after we have compiled a
working RADIUS server. The second option is to use the directory as an authentication service by binding to the
LDAP server on behalf of a user. In this way, radiusd can determine whether to accept or reject incoming
connection requests.

[41 A list of RADIUS attributes linked with the corresponding RFCs can be found at
http ://www.freeradius.org/rfc/attributes.html.

In the 0.8 release, the rim_Ildap module used by radiusd to access a directory is included in a default installation.
No additional flags are required to enable LDAP support at compile time. Running the basic confi gure && make
&& /' bin/su -c "make install"isenough to achieve a working radiusd in most environments.

Without getting too bogged down in the specifics of the FreeRadius configuration file, radiusd.conf, it is worth
explaining the general layout. Configuration options can be described as either existing within the scope of a
section bounded by { }s or global. Global parameters define information such as the location of directories
necessary to the general operation of radiusd or the number of threads that the main server should spawn. Scoped
parameters can be subdivided into module settings and component implementations.

FreeRadius modules are shared libraries defined by the project's RLM interface. The nodul es block in radiusd.conf

contains parameters specific to each library. The RLM interface describes several different components that a
module can implement. The two components of interest to us are aut hori ze and aut henti cat e.

The authorization component is used by radiusd to look up information about a user account. The aut hori ze
section can contain several different module names. Each module is queried in order for an entry matching the
login name of the user in question until a record is located or all modules have reported failure. Part of the
authorization component's responsibility is to describe the authentication method used to validate this account. The
aut hent i cat e section defines possible authentication mechanisms. The method actually used for a specific
request is determined by the information returned by the aut hori ze section.

Here is the working configuration file for a basic server to authenticate connections against the list of local
accounts:

radi usd. conf: FreeRADIUS server configuration file

#i#

G obal paraneters: directory/logfile | ocations, etc.
##

prefix = /opt/radius

exec_prefix = ${prefix}

sysconfdir = ${prefix}/etc

| ocal statedir = ${prefix}/var

shindir = ${exec_prefix}/shin

I ogdir = ${local statedir}/|og/radius
raddbdir = ${sysconfdir}/raddb
radacctdir = ${logdir}/radacct

confdir = ${raddbdir}

run_dir = ${l ocal statedir}/run/radi usd
log_file = ${logdir}/radius.|og

http://www.freeradius.org
http://www.freeradius.org/rfc/attributes.html

libdir = ${exec_prefix}/lib
pidfile = ${run_dir}/radiusd.pid

CLI ENTS CONFl GURATI ON
$INCLUDE ${confdir}/clients.conf

#i#
MODULE CONFI GURATI ON
##
nodul es {
Unix [etc/passwd-styl e authentication
uni x {
passwd = /et c/ passwd
shadow = / et c/ shadow
group = /etc/group
radwt np = ${1ogdir}/radw np
}
Local files. The user's file contains a single entry to default al
authentication to the |l ocal system
#it DEFAULT Aut h- Type : = System
files {
usersfile = ${confdir}/users
acctusersfile = ${confdir}/acct_users
conpat = no
}
}
##
Authorization: obtain informati on about the user
#i#
aut hori ze {
files
}
#i#
Authentication: validate the user request
##
aut henticate {
uni x
}

To test your server, you must make sure that the following entry is defined in radiusd'sclients.conf file to allow
connections over the loopback interface:

Al low connection requests from | ocal host.
client 127.0.0.1 {

secret = testingl23

short nane = | ocal host

nastype = ot her

}

You can test your configuration by starting radiusd in debug mode. This will produce a large amount of log
information printed to standard output.

root# radiusd -X -A
<. . . preceding output omtted . . . >
Ready to process requests

Usingradtest(1l), you can verify that the local user guestl with password testl can be successfully authenticated:

$ radtest guestl testl |ocal host 0 testingl23

Sendi ng Access- Request of id 50 to 127.0.0. 1;: 1812
User - Name = "guestl"
User - Password = "\263\033\037\ 2760@\ 022X\ 327\ 334\ 343\ 025\ 265\ 347} "
NAS- | P- Address = gari on
NAS- Port = 0
rad_recv: Access-Accept packet fromhost 127.0.0.1:1812, id=50, |ength=20

Now that you have a working RADIUS configuration, it is time to move on and integrate the new server with your
directory.

8.4.1 FreeRadius and OpenLDAP

If you want the RADIUS server to utilize the directory for authentication only, no schema modifications to your
existingLDAP server are necessary. You can simply use the posi xAccount entry for a user, as you did with the
ProFTPD server.

The first step is to define the parameters for the rim_Idap module instance. All of the parameters shown here
should be intuitive. The module will perform an anonymous bind to our LDAP server and search for a

posi xAccount entry whose ui d attribute matches the username of the connecting user. Once this entry is found,
the library will attempt to bind to the directory as the user to verify the user's credentials. All of the communication
takes place after the StartTLS command has been executed to ensure privacy.

| dap {
server = "l dap. plainjoe.org"
port = "389"
basedn = "ou=peopl e, dc=pl ai nj oe, dc=or g"

filter = "(&(objectclass=posi xAccount) (ui d=% Stri pped- User- Nane: - % User - Nane}}))"
start_tls = yes

}

There are many more parameters that can be defined for the rim_ldap module. A complete list is given, along with
descriptions, in Table 8-4.

Table 8-4. rim_Ildap module parameters

Parameter Default Description

The attribute located below the basedn that must
access_attr None exist in the user's entry. The user is denied access
if the attribute is not returned by the initial search.

Controls how the access_at tr directive is used.

access_attr_used _for_al |l owyes When disabled, the presence of the access_attr
in an entry will deny the user access.
basedn None Searches base DN.

) Specifies whether the module should compare the
conpare_check_i t ens no check items in the RADIUS request with the check
items in the directory.

default _profile None DN gf the entry containing the default RADIUS
profile.

di cti onary_mappi ng {confdir}/l dap. attrmap Locgtion of the.file containing the RADIUS/ LDAP
attribute mappings.

filter (ui d=%) An RFC 2254 search filter.

groupname_attri but e cn Attribute used when searching for a RADIUS
groupname.

The attribute containing the DN of the group of

groupnenbership_attribute |None - :
which the user is a member.

groupnmenbership_filter

(| (&(objectCl ass=
Groupd Nanes) (menber =%
{LdapUserDn})) (&

(obj ectCl ass=

Groupd Uni queNanes)
(uni quenenber =%
{Ldap-UserDn})))

The RFC 2254 search filter used to query a group
for membership.

identify DN and password to use when performing a
None nonanonymous bind to the directory server for
passwor d searches.
| dap_cache_t i neout 0 Number of seconds until the LDAP client library
- - cache expires. A setting of O disables the cache.
| dap_cache_si ze 0 The cache size to pass to the LDAP client libraries.
- - A size of O specifies an unlimited size.
| dap_connect i ons_nunber 5 The total number of LDAP connections to maintain
- - for the RADIUS server.
| dap_debug 0 OpenLDAP debug flags (see slapd.conf'sl ogl evel
- parameter).
net timeout 10 The number of seconds to wait for a response from
- theLDAP server in the event of a network failure.
Header (such as { CRYPT}) to strip from the
passwor d_header None beginning of a password before performing a
- compare operation against checklt ens in the
request.
password_attribute None The name of the attribute containing the password
- for a user.
por t 389 TCP port to use when contacting the directory
server.
: : The attribute containing the DN of the user's
rofile_attribute . :
P - None radi uspr ofi | e object.
server | ocal host Hostname of the LDAP server.
start tls no If enabled, the module will send a StartTLS
- command prior to any other LDAPoperations.
timelimt 20 Number of seconds the LDAP server has to perform
the search (server-side time limit).
ti meout 20 Number of seconds to wait for a response to the
LDAP query.
t1s node no If enabled, the module will contact the directory

using LDAPS.

The next step required to put this new module instance into play is adding a definition to the aut henti cat e
section that can be used as a value for the Aut h- Type attribute in the users file:

aut henticate {
aut ht ype LDAP {
| dap
}
}

Now you can change the authentication default in raddb/users to LDAP:

raddb/users file defined by the files authorize conponent

#it
Authenticate all
DEFAULT Aut h- Type :

users by binding to the LDAP directory.
= LDAP

After restarting radiusd (again in debug mode), test the new configuration using a preexisting LDAP user entry
(uid=kri sti and user Passwor d=t est pass):

$./radtest kristi testpass local host O testingl23
Sendi ng Access- Request of id 147 to 127.0.0.1:1812
User-Name = "kristi"
User - Password = "1q\ 325\ 026\ 020\ 315p\ 214X\ 310\ 227\ 376\ 014] F\ 332"
NAS- | P- Address = garion
NAS- Port = 0
rad_recv: Access-Accept packet fromhost 127.0.0.1:1812, id=147, |length=20

From the client's point of view, nothing appears to be different. The server, however, yields much more
information. You should be able to locate a line where the module binds to the directory on behalf of the user.

auth: type " LDAP"
nmodcal | : entering group authtype
<. . . remnang output omtted . . . >
rim.l dap: bind as uid=kristi,ou=peopl e, dc=plainjoe,dc=org/test to
| dap. pl ai nj oe. org: 389
rim.ldap: waiting for bind result
rim| dap: user kristi authenticated successfully
nodcal | [aut henti cate]: nodul e "I dap" returns ok

This is definitely the least intrusive way to integrate FreeRadius with an existing directory and will work with any
LDAPv3 server. The next step is to use your directory as a data store for the information currently stored in
FreeRadius'susers file. This, however, will require that you learn about some new schema items.

The FreeRadius project provides an LDAP schema file for use with OpenLDAP 2.x servers. The RADIUS-
LDAPv3.schema file can be found in the doc/ directory of the FreeRadius source code distribution. The schema
defines many new attributes used to store RADIUS attribute values and a single structural object class named
radi usprofil e, shown in Figure 8-5, which is used to represent RADIUS users. To keep our focus on LDAP and
not RADIUS, we will only concern ourselves with how r adi usAut hType maps the Aut h- Type RADIUS attribute.
Descriptions of the other attributes can be found in the RADIUS RFC.

Figure 8-5. The radiusprofile object class used by the FreeRadius server

ohjectClss: radiusprofile

n:

radiusArapFeatures:

First, copy the new schema file to /usr/local/etc/openldap/schema/:

radiusArapSecurity.

radiusFramadRoute;

radiusTunnelClientEndpoint

radivsArapFeatures: radiusFramadRouting: radivsidleTimenut
radiusAraphecurity radiuskdleTimeaut radiusProfileln
radiusArapZonedccess radiusGroupbame: rdiussimultaneouslse
radiusAuthType: radiusHint: rdivsTunnelMediumType:
radiusCallbackld radiusHuntgrouphame: radivsTunnelPassword:
radiusCallbackNumber: radiusLoginlPHost: radiusTunnelPrefenerie:

radiusCalledstationld:
radiusCallingtationid:

radiusloginL ATGrup:
radiusLoginLATH ode:

radiusTunnelFrivateGrupld:
radiusTunnelServerEndpaint:

radiusClass: radusLoginLATPart: radiusTunnelType:
radiwsClientIPAddress: radiusLoginLATService: radiusilserategary.
radiusFilterd: radiusLoginderyice radiusy 5
radiusFramedAppleTalkLink: radiusLoginTCPRart radiusExpiration:
radiusFramedipplelalkNetwork: radiusLoginTime: dialuphcoess:
radiusFramedApplelalkZane: radiusPasswordBetry: radiusFramedMTL:
radiusFramedCompression: radiusPortlimi: radiusFramedProtocal:
radiusFramed|PAddress radiusFrompt: radiusCheckltemn:
radiusFramed{omprassion: radiusProwyToRealm: radiusReplyltem:
radiusFramed(Fddress radiusFealm: radiusTerminationAction:
radiwsFramed|FRetmask radiussenviceType: radiusTunnelAssignmentid:
radiusFramed(FXNetwirk: radiusessionTimenut: radiussiripllsetame

root# cp RADI US- LDAPv3. schena /usr/local/etc/ openl dap/ schena/

Next, you must include a reference to this file in slapd.conf. Because a r adi uspr ofi | e object includes the
| nPasswor d and nt Passwor d attributes from the samba.schema file, it must be placed after the latter file has

been parsed:

[usr/ | ocal /et c/ openl dap/ sl apd. conf

core.schema is required for all servers.
include /usr/local/etc/openldap/ schema/core.schem

| ncl uded from Chapter 6
include /usr/local/etc/openldap/ schena/cosine.schema
include /usr/local/etc/openldap/schema/nis.schem

I ncl uded from Chapter 7
include /usr/local/etc/openldap/ schema/inetorgperson. schema

Dependenci es for sanba.schema: cosine. schema and i netorgperson.schema needed to
support --wi th-Idapsamin Sanba
include /usr/local/etc/openldap/schema/sanmba. schena

Support for FreeRadi us depends on sanba.schema for LM NT password attributes.
include /usr/local/etc/openl dap/schema/ RADI US- LDAPv3. schema

The mapping between LDAP attributes and RADIUS attributes is stored in a text file named Idap.attrmap by
default. Conventionally, this file is stored in the raddb/ directory, but both the name and location are configurable
via the rim_Idap module's di cti onary_mappi ng parameter. Because we will be using the default schema file, the
corresponding attribute dictionary is sufficient. If you decide to use a custom schema, you may have to modify the
dictionary as well.

Your next hurdle is decide where to store the r adi uspr of i | e entries in the directory. Your first choice might be
to store them with the other user account information below the peopl eou. The problem is that you cannot add
ther adi uspr of i | e object to your existing users' accounts. You can either change the r adi uspr of i | e definition
to an auxiliary object or choose to store objects of this type somewhere else. Following the trend of using provided
schemas whenever possible, we will create a new organizational unit to hold FreeRadius users and establish a link
between the posi xAccount and the r adi uspr ofi | e objects.

First, create a new ou=r adi us entry below the ser vi cesou (created in Chapter 7 for Sendmail):

dn: ou=radi us, ou=servi ces, dc=pl ai nj oe, dc=org
obj ectcl ass: organi zati onal Unit
ou: radius

Next, create a profile for the user kristi. The difficulty with this is choosing the RDN for the entry. You have already
chosen the ui d attribute as the unique naming convention for entries below ou=peopl e. However, the

radi usprofil e object includes only the cn attribute. The informational RFC 2377 defines an auxiliary ui dObj ect
class for situations such as this one. This allows you to include the ui d attribute as the RDN for new entries
regardless of the structural object class and still maintain your internal naming conventions. You could just use an
ext ensi bl eCbj ect , but the ui dObj ect is a cleaner approach. Here is the resulting RADIUS user entry:

dn: uid=kristi, ou=radi us, ou=servi ces, dc=pl ai nj oe, dc=or g
obj ectcl ass: radiusprofile

obj ectcl ass: ui d(bj ect

uid: kristi

cn: Kristi Carter

radi usAut hType: LDAP

Finally, link the posi xAccount entry for kristi to her RADIUS information by storing the DN of the

radi usprofil e object inuid=kri sti, ou=peopl e, dc=pl ai nj oe, dc=or g. This time we will use the

ext ensi bl eCbj ect to add the extra attribute. To make the new attributes easier to see, most of the existing
optional attributes have been omitted from this LDIF excerpt. Added attributes are shown in bold.

Existing optional attributes have been omtted fromthe display.
dn: uid=kristi, ou=peopl e, dc=pl ai nj oe, dc=or g

obj ectCl ass: inetOrgPerson

obj ectCl ass: posi xAccount

obj ectCl ass: sanbaAccount

obj ectcl ass: extensi bl eObj ect

cn: Kristi Carter

cn: Kristi W Carter

sn: Carter

| ogi nShel | : /bi n/bash

ui dNunber: 781

gi dNunber: 100

homeDirectory: /home/kristi

uid: kristi

rid: 2570

radi usprofil eDN: uid=kristi,ou=radi us, ou=servi ces, dc=pl ai nj oe, dc=org

The two module configuration changes to be made are changing the locations of the dictionary file for
LDAP/RADIUS attributes (di cti onary_mappi ng) and specifying the LDAP attribute containing the DN of the
user's RADIUS information (profile_attri bute):

| dap {
server = "| dap. plainjoe.org"
port = "389"
basedn = "ou=peopl e, dc=pl ai nj oe, dc=or g"

filter = "(&(objectclass=posi xAccount) (ui d=% Stri pped- User- Nane: - % User - Nane}}))"
start _tls = yes

profile_attribute = "radiusProfil eDn"
dictionary_mappi ng = ${raddbdir}/ | dap. attrnap
}

You can now remove the local copy of the users file from the RADIUS server and add the Idap module to the
authorize block in radiusd.conf. The files module is still listed because it also contains directives affecting local
accounting policies.

##
Authorization: obtain information about the user
##t
aut hori ze {
files
| dap

}

This example brings up two important points:

e Relationships between entries in a directory can be represented by storing the DNs as reference links.

e Using auxiliary objects such as the ui dObj ect to maintain a standard naming convention can help reduce
the management costs associated with locating related entries.

I'll leave it up to you to use the radtest tool to verify that the server is working correctly.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

8.5 Resolving Hosts

Now let's turn our attention to data describing hosts on a network. One of the most fundamental services provided
in any TCP/IP network is the resolution of machine names to network addresses. The most widespread mechanism
for looking up IP addresses is the Domain Name System (DNS). Again, coverage of DNS is beyond the scope of
this book; for more information, see DNSandBIND, Fourth Edition, by Cricket Liu and Paul Albitz (O'Reilly).

Chapter 1 already made it clear that LDAP is not a replacement for a specialized directory service such as DNS.
However, you can use LDAP effectively as a backend storage system for DNS zone files. Stig Venaas has written
such a patch for Bind 9 using its new simplifieddatabaseinterface (SDB). The latest release of the patch for BIND
9.1 (or later) and the necessary schema file for OpenLDAP 2 can be obtained from
http://www.venaas.no/ldap/bind-sdb/. For performance reasons, | recommend that you obtain the latest patch,
rather than using the one included in the contrib/ subdirectory of the latest BIND 9 release.

Venaas has included a brief list of the steps necessary for integrating LDAP-sdb support in Bind 9. Here are the
instructions contained in the INSTALL file of the Idap-sdb archive:

1. Copy the Idap.c source file to the bin/named/ subdirectory of the BIND 9 source tree.
2. Copy the ldap.h header file to the bin/named/include/ subdirectory of the BIND 9 source tree.
3. Editbin/named/Makefile.in and add the following lines:

DDRI VER_OBJS = | dapdb. @@
DDRVI VER_SRCS = | dapdb. ¢
DDRIVER LIBS = -1l dap -11ber

The Makefile variables may already exist; if this is the case, simply append the references to the LDAP
files to the existing definitions. You may also need to add the path to the LDAP include files and
libraries to the DDRIVER_INCLUDES and DDRIVER_LIBS respectively.

4. Editbin/named/main.c and add the line #i ncl ude<l dapdb. h> below #i ncl ude "xxdb. h"; add the line
| dapdb_init(); below xxdb_init(); and finally, add | dapdb_cl ear (); below xxdb_clear();.

After making these changes, you're ready to build the LDAP-enabled named binary by executing . / confi gure &&
make &% /bin/su -c "make install". Itis a good idea to ensure that the new server is working with an
existing set of zone files before continuing. Here is a zone file for the plainjoe.org domain; it contains four hosts,
localhost,dns1,ldap, and ahab:

plainjoe.org. I N SOA dnsl. plainjoe.org. root.dns.plainjoe.org. (

3 ; Serial
10800 ; Refresh after 3 hours
3600 ; Retry after 1 hour
604800 ; expire after 1 week
86400) ; mninmum TTL of 1 day
; Name Servers
pl ai nj oe. or g. I'N NS dnsl. pl ai nj oe. org.

; Addresses for local printers

| ocal host . pl ai nj oe. org. I'N A 127.0.0. 1

dnsl. pl ai nj oe. org. I'N A 192. 168. 1. 10
| dap. pl ai nj oe. org. I'N A 192. 168.1. 70
ahab. pl ai nj oe. org. [\ A 192. 168. 1. 80

Figure 8-6 shows the schema for the structural dNSZone object class. This schema allows you to store DNS records
in the directory. All of the attributes used to represent the various DNS records (MX, A, PTR, etc.) are optional,
which means that a dNSZone entry can represent any type of DNS record.

http://www.venaas.no/ldap/bind-sdb/

Figure 8-6. The dNSZone object class required for the Bind 9 LDAP-sdb backend

objectClass: dNSZone

, roneame:
Fequired — relative DomainMame

ONSTTL:

DN5Class: HINFORecond
ARecord: MINFORzcond:
MDRecord: THTRecond
PTRRecoed: SlGRecord:
(phiomal—{ MERecird: REYReard:
N5Becond: AAAARpcond
SO0ARecond: LOCRecond:
CMAMER=cond: NETRecand:
NAFTRR=cord: SEVRecord:
K¥Rzcord: (ERTRecomd
DNAMERecand:: AaRecord:

I have chosen to place all plainjoe.org hosts in the host s organizational unit. The following LDIF entry represents
the A record for the host ahab.plainjoe.org:

dn: rel ativeDomai nNanme=ahab, ou=host s, dc=pl ai nj oe, dc=or g
aRecord: 192.168.1.80

obj ectCl ass: dNSZone

rel ativeDomai nNanme: ahab

dNSTTL: 86400

zoneName: pl ainjoe.org

After placing your DNS zone data into the LDAP directory, you need to tell the named server how to locate the
zone information. The dat abase keyword specifies the SDB type holding the zone information; in this case, you're
using an LDAP database. Any remaining arguments after the database type are passed directly to the SDB
backend module. Here, you use an LDAP URI to define the directory server's hostname and the base search suffix.
The final number (172800) specifies the default time-to-live (TTL) for entries that do not possess a dNSTTL
attribute value.

zone "plainjoe.org" in {

type naster

dat abase "l dap | dap://192.168. 1.70/ ou=host s, dc=pl ai nj oe, dc=org 172800"
b

You can now use the dig utility to test the new LDAP-served DNS zone. Figure 8-7 describes what will happen when
thedig or nslookup tools are executed.

$ di g ahab. pl ai njoe. org +short

; <<>> Di G 9.1. 0 <<>> ahab. plainjoe.org +short
;; global options: printcnd

192.168. 1. 80

Figure 8-7. Retrieving zone information using LDAP lookups in Bind 9

LAF search
(e 192, 1651, Pfou=hosts, de=plainjos, de=arg)
.* ..

de=plainjoe,dc=0rg

_.------
7

T DNS zume B 7
(palnjoeargy 2 L.

Directory

Thezone2ldap tool included with the Bind distribution provides a quick way to transfer existing zone files into an
LDAP directory. Newer versions of this utility can also be downloaded from Venaas's web site. | decided against
using it because it creates an entry for each component of the FQDN for each host. For example, the host
ahab.plainjoe.org results in three entries: one for dc=or g, one for dc=pl ai nj oe, dc=or g, and one for

r el ati veDonmai nNane=ahab, dc=pl ai nj oe, dc=or g. For more information, refer to the zone2ldap manpage.

[Team Lig] [ersvious]

[Team LB] [<ereviovs)

8.6 Central Printer Management

Now that you've moved your DNS zone data into an LDAP directory, you have the leisure to ask, "What's the big
deal?" DNS already has highly effective mechanisms for distributing and replicating zone data; it's not like user
account data, which needs to be kept consistent on every machine. So have you accomplished anything, aside
from being able to point to a directory server that's serving the zone data to your DNS servers? Clearly, you need
to be able to justify the effort you've spent, and to do so, you need to find another application that can make use
of the same data.

Network printers are devices that are associated with entries in DNS and possess additional attributes used to
support a non-DNS application (i.e., printing). Our next step is to design a directory-based solution for managing
printer configuration information that simplifies the process of adding, deploying, and retiring printers. A printer
should be accessible to its clients as soon as it has been added to the directory. The namespace shown in Figure 8-
8 was designed with this philosophy in mind. All printer configuration information is stored below the ou=printers
organizational unit. The immediate three children, conf i g,gl obal , and | ocat i on, are used to group printers and
maintain configuration parameters.

Figure 8-8. LDAP namespace for directory-based storage of printer configuration data

de=plainjoe, dc=nrg

u=%arvices

cu=printers ou=group

A

T hostDMS
infarmation

ou=lcaticn

ou=faor-1

ou=tanfig Ouu:gbhal

|'-

priniter ‘d"m!”“’““"' CORIFION prinLers prifter grougs

Theconf i g organizational unit sits at the root of the actual configuration tree. Each printer has an entry

containing information such as the printer's name and maximum print job size. For network printers, the entry also
contains DNS information, such as IP address and hosthame. The

ou=confi g,ou=printers, dc=pl ai nj oe, dc=or g entry acts as the base suffix for the Ip.plainjoe.org DNS zone
used by your BIND 9 server. This means that if an administrator removes a printer's entry from the confi g
organizational unit, it is immediately removed by DNS as well. Devices that are physically connected to a host
acting as the spooler are not considered network printers for the purposes of this discussion.

Printers listed beneath the ou=gl obal entry should be available to all clients on the network. The entries here
contain only a printer's name; the actual configuration data can be accessed by querying for the attributes of
cn=print ernane, ou=confi g, ou=printers, dc=plainjoe,dc=org. The ou=l ocati on tree has a similar
function to the gl obal tree. The | ocat i on organizational unit is a holder for another group of organizational units,
one of which is shown in Figure 8-8. Each organizational unit at this level represents a group of printers. Each client
on the network can list one or more group names; the clients are then allowed to access the printers in the groups
that they have listed.

The major difficulty in dealing with printers is deciding on an acceptable schema for representing printer
capabilities and data. Currently, there is no standardized printer schema. The closest we have to a standard is the
Internet-Draftdraft-fleming-ldap-printer-schema-XX.txt. We only need to implement a subset of the schema in
this document (see Figure 8—9).I§1 The printer.schema file also includes a modified version of the schema
presented in NetworkPrinting, by Todd Radermacher and Matt Gast (O'Reilly). These additional object classes and
attributes support the information needed to generate printcap entries for use with the Berkeley print spooler
(LPD) or Patrick Powell's LPRng (http://www.lprng.com/).

http://www.lprng.com/

[5]1 The printer.schema file is available online at the web site for this book
(http://www.oreilly.com/catalog/ldapsa).

Theprinter.schema file should be viewed as an example only. While it can be used in a
production directory, my hope is that a final standardized schema will soon be available
and supported by printing vendors.

Figure 8-9. The abstract printerAbstract class, structural printerService class, and auxiliary classes
printerLPR, nprintPortPrinterInfo, and nprintNetworkPrinterInfo included in the printer.schema file

ohjectClss: printerAbstract abjectClass: printerL PR
printer-narme: Reqweu'— princer-narme:
printer-natural-language-confiqured: bomeonenaccncans
printer-lacation: printer-aliases
printer-infa:

primber-more-info;

primter-make-and-model;
printer-multiple-dooument-jobs-supported:
printer-charset-configured:
printer-charset-supported:
printer-generated-natural-language-supportad:
printar-document-format-supported:

printer-color-supported: abjectClass: nprintPartPrinterinfi
printer-compression-supported:

printer-pages-per-minute: npeintDewiceName:
printer-pages-per-minute-color npeimtDewiceFlags:
printer-finshimgs-supported npeintFilter:
printer-number-up-supported

printer-sides-supported:

printer-media-supported:
printer-media-local-supported:
printer-reselution-supperted:
printer-print-guality-supported:
printer-job-priority-supported
imter-opis-3u :
ﬁmr—mlﬁk-mrgmpnm: objectClass: npeintetworkPrinterinfo
printer-curment-operator
printer-service-persan: npsint DN SHame:
printer-delivery-orientation-supperted: nprintHardwaredueueiame
printer-stacking-order-supported: nprintueuefort
printer-output-features-supparted:

objectClass: printerService

printer-uri;

printer-xri-supported: —Cptiocol

Begin populating the pri nt er s organizational unit with a simple network printer named hp2100. The pri nt er -
uri attribute was developed by the IETF's Printer Working Group to represent different printing systems such as
ipp://,lpr://, etc. All of the printers in your directory will use a printer URI of the form Ipr://<printer-name>. This
printer also exists as a host in DNS under the name hp2100.Ip.plainjoe.org.

Immediately, however, we have a problem: the dNSZone and the pri nt er Servi ce objects are both structural
classes. Luckily, the default Bind 9 LDAP lookups do not use the obj ect cl ass value in searches. Therefore, you
can use the ext ensi bl eObj ect class in the place of dNSZone. The other solution would be to define a new
auxiliary object class that contained all of the attributes contained in a dNSZone object. | choose to use an

ext ensi bl eCbj ect to prevent the introduction of new schema items into our discussion.

Now that the object class conflict has been resolved, we can return to our discussion of printer attributes. The
printer's domain name is stored in the r el at i veDomai nName and zoneNane attributes. The pri nt er - name and
npri nt Har dwar eQueueNane represent the remote machine (r n) and remote printer (r p) printcap variables.

dn: printer-uri=lpr://hp2100, ou=confi g, ou=pri nters, dc=pl ai nj oe, dc=org
aRecord: 192.168.1.220

printer-name: hp2100

npri nt Har dwar eQueueNane: raw

printer-uri: |pr://hp2100

rel ativeDomai nNane: hp2100

obj ectCl ass: printerService

obj ectCl ass: nprintNetworkPrinterlnfo

http://www.oreilly.com/catalog/ldapsa

obj ectCl ass: extensi bl eObj ect
printer-job-k-octets-supported: 10000
zoneNare: | p. pl ainj oe. org

You get extra points if you noticed that the npri nt DNSNane attribute is missing. This attribute doesn't appear
because the fully qualified hostname can be determined from the r el at i veDomai nNane and zoneNane attributes.
Because the npri nt DNSNane serves the same purpose, it can be left out. The script for generating a printcap
entry attempts to retrieve the npri nt DNSNane attribute first; in its absence, the script generates the remote
printer's name by concatenating the r el at i veDomai nNanme and zoneName attribute values.

Your system must be able to represent nonnetworked printers in the same namespace as networked printers.
Nonnetworked printers don't have the attributes associated with a dNSZone (replaced by an ext ensi bl eObj ect)
that are required to support DNS lookups. Of course, since such an entry describes a nonnetworked device, this
detail is of no concern. Here's the LDIF representation of a nonnetworked printer:

dn: printer-uri=lpr://bjc240,ou=confi g, ou=printers,dc=pl ai nj oe, dc=org
printer-name: bjc240

printer-uri: l|pr://bjc240

obj ectCl ass: printerService

obj ectCl ass: printerlLPR

obj ectCl ass: nprintPortPrinterlnfo

nprintDeviceNane: /dev/| p0

printer-aliases: canon

Directory entries that exist below the ou=gl obal and ou=l ocat i on roots contain only a printer's name. The next
two directory entries state that the printer hp2100 is available for all network hosts (because it is in the gl obal
organizational unit), and the printer bitsink is available only to clients within the f | oor - 1 group (because it is in
thef | oor - 1 group, which is within the | ocat i on subtree):

dn: printer-name=hp2100, ou=gl obal , ou=printers, dc=pl ai nj oe, dc=or g
printer-name: hp2100
obj ectCl ass: printerService

dn: printer-nanme=bitsink,ou=fl oor-1, ou=locati on, ou=pri nters, dc=pl ai nj oe, dc=org
printer-name: bitsink
obj ectCl ass: printerService

Thenpri nt Host Pri nt er AUXI LI ARY object class (see Figure 8-10) allows you to extend an existing entry for a
network host to define membership in a printing group, and lets you list any host-specific printers that should be
available to users. The entry for workstation queso.plainjoe.org associates it with the f | oor - 1 printing group (i.e.,
ou=f1 oor -1, ou=l ocati on, ou=printers, dc=pl ai nj oe, dc=or g) and includes a reference to the specific
printer named draft-printer:

Figure 8-10. nprintHostPrinter object class

objectClassnprintHostFrinter

) nprntPrinterkame:
Dptienal —| it ocatian:

dn: rel ativeDomai nName=queso, ou=hosts, dc=pl ai nj oe, dc=org
aRecord: 192.168.1.74

nprintLocation: floor-1

obj ectCl ass: dNSZone

obj ectCl ass: nprint Host Printer

rel ativeDomai nNane: queso

dNSTTL: 86400

nprintPrinterName: draft-printer

zoneNare: pl ainjoe.org

Finally, you must be able to retrieve information from the directory and format it in a way that is usable by the
local printing system. The generate_printcap.pl Perl script supports the printer.schema used in this section and
generatesprintcap files from the directory that are compatible with the BSD printing system. This script supports
the common LDAP searching options, such as the directory server's name and base suffix. The script also accepts

the hostname of the client to receive the printcap file. Table 8-5 presents the complete set of parameters

supported by generate_printcap.pl.

Table 8-5. Options to generate_printcap.pl

Parameter Default Description

--base none The base suffix used when searching the directory
--debug of f Enables extra debugging output

--help Summarizes command usage and parameters

--host $HOSTNAVE The host for which you want to generate the printcap file
--printcap printcap. $HOSTNAME The name of the generated printcap file

--server | ocal host The hostname of the LDAP server to query

Figure 8-11. Printing information and entries for the host queso.plainjoe.org

- - i r|I Dil'emrj'
‘-:-'u=hosls .l
relativelomainName=quess gu=printers
relativellomainName: queso
nprintLocation: floge-1
nprintPrirteriame: draft-printer
ou=lacation

ou=Cenfi
: 4 printer-name:hp? 100 ou=flanr-1

printer-name:bitsink

printer-uri=lpr hp2 100

prirter-uri=lpr k40
printer-uri=lprafdraft-printer
prirter-uri=lpr./bitsink

The following command generates a printcap file for queso.plainjoe.org, given the directory entries represented by
Figure 8-11:

$ generate_printcap.pl --host=queso \
--base="dc=pl ai nj oe,dc=org" \
--server =l dap. plai njoe. org

Sear chi ng ou=gl obal , ou=pri nt ers, dc=pl ai nj oe, dc=org
Using entry for "rel ati veDormai nName=queso, ou=host s, dc=pl ai nj oe, dc=or g"
Sear chi ng ou=fl oor-1, ou=l ocati on, ou=printers, dc=pl ai nj oe, dc=org
Fini shed generating printcap (printcap.queso)
generate_printcap.pl uses an anonymous bind when connecting to the LDAP server. This means that the OpenLDAP
server must be configured with the following access control rule, which allows read-only access to information
about printers:
access to dn.children="ou=printers, dc=plainjoe,dc=org"
by * read

The resulting printcap file is:

#
Printcap file generated automatically on Sun Jan 20 19: 33:37 2002 for

#

host queso

HRHBHHRHH BB HHRH HRH AR R HRH A AR R R H R R HRH AR H AR R HEH R AR R AR H R
printer-uri=lpr://hp2100, ou=config, ou=printers, dc=pl ai njoe, dc=org
obj ectclass: nprintNetworkPrinterlnfo
hp2100: \
:sh:\
1 mx#10000: \
:1f=/var/spool /1 pd/ hp2100/ | pd-err:\
:sd=/var/spool /| pd/ hp2100: \
‘I p=/dev/null:\
:rmehp2100. | p. pl ai njoe. org:\
Srp=raw
R R R R R R R R R

HEHBHHBH SRR AR HRH AR R T R R R A R R R R R R R R R R R
printer-uri=lpr://bitsink, ou=config, ou=printers, dc=pl ainjoe, dc=org
obj ectclass: nprintNetworkPrinterlnfo
bitsink:\

:sh:\

CX#O:\

;1 f=/var/spool /| pd/ bi tsink/l pd-err:\

:sd=/var/spool /| pd/ bi t sink:\

;I p=/dev/null:\

srnebi t sink. | p. plainjoe.org:\

:rp=bitsink
HHH RS HRH AR R RSB HEH AR RS HRH AR R R H A R HR AR H AR R HEH R AR R HR R

HHH R R R R R
printer-uri=lpr://draft-printer,ou=config,ou=printers, dc=plainjoe, dc=org
obj ectclass: nprintPortPrinterlnfo
draft-printer:\
:sh:\
T #0:\
1 f=/var/spool /Il pd/draft-printer/|pd-err:\
:sd=/var/spool /| pd/ draft-printer:\
21 p=/dev/I p0:\
:sd=/var/spool /| pd/ draft-printer:\
if=/opt/printers/filters/hpif.sh:
HH A A A R R R S R R R R

The details of writing Perl scripts such as generate_printcap.pl to manage information in an LDAP directory using
the Net::LDAP module will be presented in Chapter 10.

Whenever you're trying to integrate network services into LDAP, remember to focus on reduction of data. Storing
information in a directory has no benefit by itself; it is only worthwhile if it decreases the cost of managing the
data (i.e., makes life easier for you and the people you work with). If data is used only by a single application on a
single host, the information could be kept in a local database file just as easily. However, if the information is
needed by several services on multiple hosts, as with user accounts or printer settings, storing the information in
an LDAP directory reduces the cost of updating data by ensuring that each change needs to be made only once.

[Team Lig] [rrevious]

[Team LB] [<ereviovs)

Chapter 9. LDAP Interoperability

What is a chapter on interoperability doing in a book on LDAP? After all, I've presented LDAP throughout this book
as a standard protocol, and standards are supposed to minimize, if not eliminate, interoperability problems. One of
the major selling points of LDAP is its potential for consolidating vendor-specific or application-specific directories.
We've seen many examples of this: using LDAP as a replacement for NIS, as a backend data store for DNS, and as
a replacement for many ad hoc databases used in email management.

Still, while LDAP minimizes interoperability problems, "minimize" is definitely the key word. The core features of
LDAP are standardized, but things such as schemas are not. There are many common object classes and attributes
that can be extended by a vendor. Not only can schemas be extended, the protocol can be extended as well by
creating additional operations using extensions and controls, and not all vendors support the same ones.

For each service that can be consolidated into an LDAP directory, there must be a corresponding client-side
application that can access the old information in the new directory. That's not always an easy order to fill; we've
already seen some clever workarounds to help older applications access an LDAP directory, such as using the
pam_ldap library presented in Chapter 6 to enable non-LDAP-aware applications to authenticate users in the
directory. Furthermore, sooner or later you will encounter an LDAP-enabled application that requires the directory
service to implement a specific schema or extended operation.

The goal of this chapter is to discuss several technologies that you can use to solve problems of this sort. Every
directory integration project is unique. I will show how to solve a number of common directory integration
problems—and although the problems | discuss are typical enough, they're only a small fraction of the problems
you're likely to face. The most effective way to prepare yourself to solve the problems posed by your environment
is to examine the tools, concepts, and architectures that can be combined into a solution to meet the needs of your
users.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

9.1 Interoperability or Integration?

The terms interoperability and integration each have a different place within our coverage of LDAP. For our
purposes, directory integration means enabling client applications to access data in an LDAP directory, a topic that
has been covered extensively in previous chapters. Interoperability should address communication between LDAP
servers themselves. The distinction between integration and interoperability begins to blur when one LDAP server
becomes the client of another LDAP server.

Whenever you start thinking about interoperability or integration, your first step should be to ask what level of
interoperability or integration your application requires. There are a number of solutions that provide
interoperability or integration in various forms. Knowing what your application requires will make it much easier to
decide which solution is appropriate. Table 9-1 lists some common approaches to interoperability and integration
issues.

Table 9-1. Common directory interoperability solutions

Problem Possible solution Example

Gateways that translate one
directory access protocol into | The NIS/LDAP gateway presented in Chapter 6
another

"What can | do if my application
doesn't speak LDAP?"

"How can users in a non-Unix
administrative domain access
services on Unix hosts?"

Cross-platform authentication |Authenticating non-Microsoft clients against an
services active directory

Distributed, multivendor
directories glued together by
referrals and references

"How can | join information
contained in different directories?"

Connecting directories from different vendors
into a single DIT

"How can | unify access to the Metadirectories that provide an .
. - . . Using an LDAP proxy server to translate
databases and directories held by |integrated view of several . . .
. . L - . entries from a second directory into the format
multiple departments in my disjointed directories and . L
L " needed by client applications
organization? databases

"How can | implement replication
. p_ P Push/pull agents that
or synchronization between

. . . synchronize information from
directories from different vendors? Y .
" one directory to another

Customizing scripts or in-house tools that suck
data from one server and uploading it to
another directory after translating it into a
format understood by the second server

This chapter examines ways to implement each approach. No single approach is a solution in and of itself; they're
tools that you can use to assemble a solution that works in your environment. My intent, therefore, is to spur your
imagination and introduce you to the different types of glue that are available for coordinating directory services.

[Team LiB] [<ereviovs)

[Team LB] [<ereviovs)

9.2 Directory Gateways

Gateways are not a new concept; we've seen gateways between different email formats, different network
filesystems, and so on for years. When building a gateway for directory services, one directory protocol is used as
the frontend (the "face" presented to application clients). Another protocol is used between the gateway and the
backend storage mechanism. The irony of using a directory gateway to unify access to an LDAP server is that LDAP
itself was originally designed as a gateway protocol for X.500.

PADL'sypldapd daemon, presented in Chapter 6, is an example of a gateway between NIS and LDAP. Packages
such as ypldapd tend to do one thing and do it well. In many respects, such a gateway can simply be viewed as
another LDAP client. The gateway consumes LDAP information and makes that information available to its clients
through another protocol.

Another example of an NIS/LDAP gateway is the NIS service distributed with Microsoft's "Windows Services for
Unix (SFU)." This Active Directory add-on provides tools for importing data from a NIS domain into Active
Directory. Once NIS data has been incorporated into Active Directory, SFU can provide services for NIS clients
from the Active Directory domain. For more information on the SFU product, see

http ://www.microsoft.com/windows/sfu/.

The main advantage of using a gateway is that you usually don't have to modify any clients. This alone can save a
great deal in the cost of administration. The disadvantage of using a gateway is that translating requests and
replies from one protocol to the other requires additional overhead. Furthermore, clients can't take full advantage
of the LDAP directory service; they're limited to the services offered by the gateway. In many environments, these
disadvantages are relatively minor.

[Team LiB] EEEENES | EE

http://www.microsoft.com/windows/sfu/

[Team LB] [<ereviovs)

9.3 Cross-Platform Authentication Services

Cross-platform authentication is a term heard most often in IT departments that want to authenticate logons to

Unix services using Microsoft's Active Directory,m or authenticate logons to Windows clients using a Unix-based
LDAP server. In this scenario, we're not interested in interoperability between directory services, but between a

specific directory service and nonnative clients (for example, Active Directory and Unix clients).

[11 Active Directory can be described as a network operating system (NOS) directory service that uses
LDAPv3 as its primary access protocol and is, along with Kerberos 5, the major piece of Microsoft's larger
domain infrastructure model. So while it is possible to use Active Directory as a vanilla LDAP directory
service, | have never encountered a network that used Active Directory without a specific need for
integration with other Microsoft technologies. More information about Active Directory can be found at
http://www.microsoft.com/ad and in Windows 2000 Active Directory Services (O'Reilly).

Cross-platform authentication is the Holy Grail for many administrators, not just those dealing with Microsoft
operating systems. Novell's eDirectory (formally called NDS) is available on a variety of platforms, including
Windows, Linux, and Solaris. Novell provides tools such as a PAM module for NDS to integrate host authentication
services with their directory. However, while Microsoft does provide some tools and sample source code for
integrating Unix clients into an Active Directory domain (http://msdn. microsoft.com/library/en-
us/dnactdir/html/kerberossamp.asp), there is currently no way to implement an Active Directory domain using
non-Microsoft servers and technologies.

In all fairness, Microsoft's small offering of packages for Unix servers does not prevent Unix clients from using the
user and group account information stored in an Active Directory domain. There are at least three methods for
using Active Directory to authenticate Unix requests:

e The NIS/Active Directory gateway included in Microsoft's "Services for UNIX" package allows Unix clients to
access information stored in Active Directory. We discussed this product briefly in the previous section.

e PADL's PAM and NSS LDAP libraries can act as a proxy server between the Unix services and Active
Directory. The modules map attributes and object classes stored in Active Directory to something more
suitable for consumption by Unix applications.

e Active Directory domains use Kerberos 5 for authenticating users. Interoperability between the
implementations of Kerberos on Windows and other platforms is better than you might expect, but perhaps
not as good as you would hope.

The remainder of this section examines the PAM/NSS solution in depth. At the end of this section, we'll discuss how
to use Kerberos to enhance interoperability between OpenLDAP and Active Directory. The examples use a single
Active Directory domain with the name ad.plainjoe.org using the default options provided by the dcpromo
installation process. The domain name implies that the domain naming context is dc=ad, dc=pl ai nj oe, dc=or g.

Chapter 6 covered how to install and configure the PADL libraries with an OpenLDAP server supporting the RFC
2307 (NIS) schema. Using these modules to access information held by an Active Directory server is almost the
same. The pam_Ildap library requires no additional compilation options for Active Directory support. The changes
are solely to the module's configuration file.

The following excerpt from /etc/ldap.conf provides the module with the information it needs to contact the Active
Directory server. For those unfamiliar with the Active Directory namespace, by default all users and groups are
stored in the cn=User s container directly below the top-level entry in the domain. Therefore, if the default
container is used, a one-level search beginning at cn=User s, dc=ad, dc=pl ai nj oe, dc=or g should be sufficient to
locate any user or group in an Active Directory domain:

[etc/| dap. conf for PADL pam |dap and nss_|dap libraries

#it
Defi ne the hostnane of the Wndows Domain Controller to contact.
host wi ndc. ad. pl ai nj oe.org

Active Directory does support LDAPv2, but meke v3 the default.
| dap_version 3

http://www.microsoft.com/ad
http://msdn.microsoft.com/library/en-

Users and groups are stored one level belowthis entry in the directory.
base cn=users, dc=ad, dc=pl ai nj oe, dc=or g
scope one

With a default installation, the PAM library searches the directory using the filter

(& obj ect cl ass=posi xAccount) (ui d=%s)), in which %s is expanded to the login name entered by the user. By
default, Active Directory does not support the posi xAccount object class or the ui d attribute. To work around
this, you need to develop a different search filter that can successfully locate users in an Active Directory domain.

User accounts in Active Directory are represented by the user object class; the login name is stored with the
sAMAccount Nane attribute. Therefore, an appropriate filter for this application is

(& obj ect cl ass=user) (sAMAccount Name=%s)), and you can apply this filter by setting the pam filter and
pam_| ogi n_attri but e parameters as follows:

pam filter (obj ect cl ass=user)
pam | ogi n_attri bute sAMAccount Nanme

Finally, you must tell pam_Ildap how to change the user's password in Active Directory. The pam_ldap library
provides support for changing passwords in a variety of directory servers, including the SunOne server, the
password modify extended operation (RFC 3062), Novell's NDS, and Microsoft's Active Directory. The

pam passwor d parameter decides which mechanism is selected. By specifying the ad password change

mechanism, you allow users to update their Windows password using a PAM-aware application such as Linux's
/usr/bin/passwd:

pam passwor d ad

Be aware that this setting does not affect how the actual authentication is done; Chapter 6 describes the
authentication process. To summarize, the PAM library performs these steps:

1. It requests an entry matching the search filter from the directory server.

2. It attempts to bind to the directory server using the DN of the returned entry and the clear text of the

password.
"_-‘ SASL support in pam_Idap, both for searching and for user authentication, is planned for a
. future release.
wh oA
ek

Step 1 is a problem because by default Active Directory does not allow LDAP clients to make anonymous searches
for user or group account information. There are several ways around this problem. One solution is to specify
values for the bi nddn and bi ndpw parameters in /etc/ldap.conf. Because this file must be readable by all users on
the system, the account credentials stored in the configuration file will be exposed to anyone who can log onto the
host. You will have to be the judge of how this security concern will impact your network. A second solution is to
allow anonymous searches of specific attributes within Active Directory. This has the same effect on pam_ldap as
defining an account to use when searching the Active Directory domain, but now anyone can search for usernames
using basic LDAP requests. I'll cover both methods for the sake of completeness, even though allowing anonymous
access to Active Directory is often avoided by administrators.

Torelax the access control lists on users and groups within Active Directory, launch the Active Directory Users and
Computers administration tool. To view the properties of the Users container, right-click on the Users icon and
select Properties . . . from the menu that appears (see Figure 9-1).

Figure 9-1. Modifying the ACL on the Users container to allow anonymous searches of user and group
names

=0x

=18 =]
B @ edsvEn
Tipe Dascriphon a
by Built-in sooounk o sdrdnd
Secusity Group ... Entenprise certification an
Seoaly Group ... DG Adeeresliralon Group

e SEOURY GrOUp .. NS chents wia Brs parmi
.. Seomky Group ... Al workstations and serve
oo Soosky Group ... Al e condrolers in B
Sy Gringn ... ol ks gty
Seouy Group .., Al donar ubsng

Ad... Seowky Group ... Designsbed sdminisrston =
I —] |

Cpers propetty shest for the ourent selection,

Next, move to the security tab of the resulting dialog box and select the Advanced button. You need to add three
entries to the access control list, as shown in Figure 9-2:

e The Everyone group requires the List Contents permission on the User container itself.

e The Everyone group requires the ability to read certain properties of User objects. This permission should
apply to the User container and all of its children.

e The Everyone group requires the ability to read certain properties of Gr oup objects. This permission should
apply to the User container and all of its children.

Figure 9-2. Allowing the Everyone group access to read user attributes

Licers Pr 1|
- - - |
Bl 7]
ﬂhw.l'll:l:
5 st —
lﬂ!-\u | Peamisson Appk o |*|
£ Domein s Potlon Authericated Users Special Thes clyect ory
'EEF“H] Builon Diomen Adwir [A0WD . Special Thiz elict oy
riyacH 3 . . L. .
e #llors Enteaprivs dudmine (0. Full Condeol Thiz obisct and sl child obj
Frarizsore: !A.Alcm E veipore Fesd P, User ohyschs
Fial Corirad Tosdon Everpre Fead P Gooup cbyeck:
_— Al Pawhndews 00 Co Lisi Conbents Thizobiact and af chid obj
s Allors Pariecdons 000 Co.. Special o chinci |
Creste A0 Crd Add | P | vewEa. |
Dhedztes AN CH
Thix permirsion is defiresd deecty on this obisol. This pemsssion is not inhented by chid
ol
Advanced...
= Hlow inhemts
hinct ¥ Allom inhesitable: permissions from panent io propagats ko iz obiscl
o | Cocd | Aok |

To simplify this exercise, the Everyone group has been given the permission to read all properties for a user. This
list can be shortened to the attributes that compose an entry in the passwd(5) file (the actual password is not
needed). Again, you will have to judge whether this fits within the boundaries of your network security policies.
Note that Read All Properties does not include the permission to read a user's password anonymously.

Enabling anonymous access frequently leaves a bad taste in the mouths of Active Directory admins. Because of
this, you should choose to use an account named padl for searching the directory. This user account was created
using normal means with the default set of security policies. Now, you must add the directives in Idap.conf for
binding to the Active Directory server:

Bind as the user padl in the ad.plainjoe.org domain
bi nddn cn=padl, cn=Users, dc=ad, dc=pl ai nj oe, dc=or g
bi ndpw padl - secr et

Now that pam_ldap can locate the DN for an account using a search based on the sAMAccount Nane attribute, it is
time to move on to the second problem: the PAM library currently sends the user (and bi nddn) credentials in clear
text. The obvious solution to this problem is to use SSL to secure the information in transit.

Active Directory on a Windows 2000 server does not implement the StartTLS extended operation for negotiating a
secure transport Iayer,m but it does support the LDAPS protocol on port 636. There are two preconditions for
implementing this solution:

[2] The Windows 2003 Server release due in April 2003 reportedly supports the StartTLS extension.

e The Windows Active Directory server must support 128-bit encryption. If you're using Windows 2000, you
can obtain 128-bit encryption by installing the high-encryption version of the latest service pack. See
http ://www.microsoft.com/windows2000/downloads/servicepacks/ for details on obtaining and installing
Windows 2000 updates.

e The Active Directory server must have been issued a digital certificate. Our network will use the Certificate
Authority (CA) included with the Windows 2000 Advanced Server OS. For more details on installing the
Windows 2000 Certificate Authority, refer to the Windows 2000 Resource Kit online at
http ://www.microsoft.com/windows2000/techinfo/reskit/en-us/default.asp.

After installing the Windows Certificate Authority, reboot the server before attempting to
connect using the LDAPS protocol.

After the directory server has been configured to support LDAPS, add the following lines to /etc/ldap.conf:

I nstruct pam.|dap and nss_|dap to use LDAPS when connecting to the directory.
ssl on
port 636

By default, pam_Idap does not verify the LDAP server's certificate (see thet|s_checkpeer parameter from
Chapter 6). For our purposes, that's acceptable.

The OpenLDAP 2.1 client tools will fail if the server's certificate cannot be verified. This can

result in some strange problems if you are using Idapsearch to issue queries to Active
Directory. To work around this problem, place the following line in the OpenLDAP client
library configuration file (/usr/local/etc/openldap/ldap.conf):

TLS _REQCERT never

At this point, the Unix client can potentially validate connection requests for a PAM-enabled service using Active
Directory. However, as we saw in Chapter 6, PAM and NSS solutions are often implemented together. Next you
must configure the nss_ldap module to retrieve Unix account information from Active Directory, in combination
with using pam_ldap for authentication. The problem you need to deal with this time is that Active Directory does
not normally maintain any attributes related to Unix accounts.

The exception to this rule is the NIS server included in Microsoft's SFU. To support NIS clients, the SFU installation
process modifies the Active Directory schema to include attributes and object classes for storing information such
as Unix user and group identifiers (numeric UIDs and GIDs), Unix-style home directory paths, and Unix login shells.
So you can extend the Active Directory schema by installing the SFU package, and using the schema it
provides—even if you don't intend to use Microsoft's NIS server itself.

Another approach is to extend the Active Directory schema yourself. After all, it's really just another LDAPvV3
server. The AD4Unix plugin developed by CSS Solutions (http://www.css-solutions.ca/ad4unix/) allows you to
manage Unix-related attributes using the standard "Active Directory Users and Computers" Microsoft Management
Console (MMC) interface. The MKSADEXtPlugin extension is freely distributed in binary form as a Windows Installer

(MSI) package. The installation process gives you the opportunity to import the SFU schema without installing SFU
itself.

Modifying the schema of an Active Directory forest should not be taken lightly. Once
you've extended the schema, you cannot remove any of the new classes or attributes.
Make sure to back up the directory server before proceeding.

http://www.microsoft.com/windows2000/downloads/servicepacks/
http://www.microsoft.com/windows2000/techinfo/reskit/en-us/default.asp
http://www.css-solutions.ca/ad4unix/

Active Directory designates one domain controller as the schema master; all schema changes must take place on
this server. In order for the MKSADEXtPlugin installer to import the schema changes, two conditions must be met:

e The user attempting the schema update must be a member of the Schema Admins group.
e The domain controller serving as the Schema Master must be configured to allow schema changes.

By default, a Windows 2000 Active Directory installation does not allow the schema to be modified; this limitation
has been removed in Windows 2003. To change this setting, you must register and open the "Active Directory
Schema" MMC snap-in. To register the snap-in with the operating system, execute the following command on the
domain controller:

C:\ W NNT\ Syst enB2\ > regsvr 32. exe schmmygnt . dl |

The Active Directory Schema snap-in should now appear in the list of available modules for the MMC. After opening
the MMC application and adding the schema management tool, as shown in Figure 9-3, you can access the Change
Schema Master dialog window by selecting the Operations Master . . . option from the right-click context menu on
the Active Directory Schema icon. Check the box that determines whether the schema may be modified.

Figure 9-3. Using the "Active Directory Schema' MMC snap-in

"t Console | - [Console Rook) Active Direc
T Cocle ndom s DEE M .l8lx
fticn Yem Erwikes | & = Bm G| P

R ssctive Dractony Schema

WThange the Ciperastions Master

Now that the directory server is configured to access the imported schema, the MKSADEXtPlugin installation
process can begin. You may see messages about components being successfully registered. These are normal and
can be safely ignored.

When the Windows Installer has completed, you will see the configuration tool for MKSADEXxtPlugin's general
settings under the Start menu. This application, shown in Figure 9-4, allows you to specify a range of numeric UIDs
and GIDs that are automatically allocated to Active Directory users and groups as necessary. These IDs are
allocated by the snap-in but can be set manually. The "Allowed NIS" field defines the syncNi sDonai n attribute for
a user. This attribute is provided for the SFU NIS server and is not needed by either pam_ldap or nss_ldap.
However, unless a user is placed in one of the listed NIS domains, the remaining Unix attributes will not be
available, as shown in the user properties dialog in Figure 9-5.

Figure 9-4. The AD4Unix configuration application

x|
Ukt Exdantion Prspartins | Urie Estrntions Schema setfings | i Flkoul Plugin eiings |
Alowed NIS Frd LD

DOMAIN I g server vt COMnecher

Uses's chslals
Dradod user rane | CRMcoounthl e

Ul e [1000 b [E5805 Defedt 1000 Lt b 100
Sattings kot Phuge Dadwk i escripiion
[ttt e

Dialansht hrme Iokedar
[reme/garionzsancounitome’

PEEF TR] lpesnr] el
|.-'bn."huh

Gronp's delods
[ekl g SpMAcourthama

Alowed GID o 1000 o [R5 Lost e 1000

o 1 cwen | ||

Figure 9-5. Accessing the Unix Settings for a user account from the MMC snap-in

Kristi Carter Propertics g 2x
MemberOf | Diakin | Objsct | Secwity | Ervicoment | Sessions
Gensral | Addvess | Account | Profle | Teleghones | Organization | Published Certificates
Riemate control | Teminal Senices Profile Unix settings

NIS
| DOMan =

L& name; Ikm*'

e (1002
GIp- (1000

Dieseriphon; |Knsh Carten

Heme foldar |f1"|:|rrefgarinm'k|itli

Shal |."I:1n."|:lasH

Back on the Unix side, the NSS library can handle the AD/SFU schema only if it is compiled with the —enable-
schema-mapping option. The —enable-rfc2307bis option is frequently used in combination with schema mapping to
define individual suffixes for the various NSS databases such as passwd and netgroup. The installation steps now
become:

$./configure --enable-schema- mappi ng --enabl e-rfc2307bi s
$ make
$ /bin/su -c "make install"

The/etc/nsswitch.conf file should include the settings used in the earlier discussion of nss_ldap (see Chapter 6):

Portion of /etc/nsswi tch.conf needed to support LDAP | ookups in AD
passwd: files |dap
shadow files |dap
group: files | dap

Since pam_ldap and nss_ldap share a common configuration file, setting up the latter doesn't require much effort.
The nss_ldap library must be instructed to map necessary attribute and object class names on the AD server to a

member of the RFC 2307 schema commonly used to represent Unix service information. To do this, use the
nss_map_attri but e and nss_nmap_obj ectcl ass parameters:

Excerpt from /etc/| dap. conf

< . . . other parameters not shown . . . >

Map AD attri butes and obj ectcl asses to ones expected by nss_| dap.
nss_map_obj ectcl ass posi xAccount User

nss_map_obj ectcl ass shadowAccount User

nss_map_attri bute ui d sAMAccount Name

nss_map_attri bute uni queMerber Menmber

nss_nmap_attri bute homeD r ect ory nms SFUHoneDi r ectory
nss_map_obj ectcl ass posi xGr oup Group

nss_map_attri bute gecos nanme

Certain attributes, such as the ui dNunber and gi dNunber , are not mentioned in the configuration file. If a
mapping is not defined for an attribute or an object class, nss_ldap assumes that the attribute has the same name
in the directory. If you browse the directory using the Active Directory Schema snap-in, you can verify that these
two attributes are included in the SFU schema.

It is time to test the configuration. Start by configuring a user named kristi in Active Directory. Next, verify that
this user has been assigned to an NIS domain and that the appropriate Unix attributes have been stored in the
directory (refer to Figure 9-5 for an example). The client on which the PADL libraries have been installed should be
able to map the Active Directory user kristi to a valid Linux user using the getent tool:

$ getent passwd kristi
kristi:x:1002:1000: Kri sti Carter:/home/garion/kristi:/bin/bash

To test the PAM portion of this setup on a Linux host, define the following auth section for the OpenSSH service in
/etc/pam.d/sshd. The modules are stacked so that if a user can be validated by Active Directory, the authentication
test returns succes:

Portion of /etc/pam d/sshd

#it
|f a user can be authenticated using LDAP, that is enough.
aut h required /1ib/security/ pamenv. so

aut h sufficient /lib/security/ pamldap.so
aut h sufficient /lib/security/ pamunix.so use first_pass |ikeauth
aut h required /1ibl/security/ pamdeny. so

The Active Directory user kristi should be able to log onto the Linux host (garion) using the Active Directory
password associated with her account:

$ ssh kristi @arion
kri sti@arion's password:
Last login: Sat ct 5 20:29:14 2002 from ahab. pl ainj oe. org

[kristi @arion kristi]$ id
ui d=1002(kri sti) gi d=1000(Domai n Users) groups=1000(Dormai n User s)

If anything fails at this point, here are some items to check:

e Ensure that both the users and group containers can be searched using the account specified by the bi nddn
in/etc/ldap.conf, or that the containers allow for anonymous searches

e If the LDAPS protocol is suspect, verify that everything works as expected with ssl no in /etc/Idap.conf. If
this works, verify that the Active Directory server has a valid certificate. When all else fails, use a network-
monitoring tool such as Ethereal, or run OpenLDAP's Idapsearch with a debug value of -1 to isolate the point

of failure in the SSL negotiation.

o Verify that the gi dNunber on the Unix Settings tab of the account properties can be resolved to a real group
in Active Directory.

e Follow the PAM and NSS troubleshooting tips provided in Chapter 6.

9.3.1 A Short Discussion About Kerberos

No discussion of Active Directory authentication or interoperability would be complete without at least some
mention of Microsoft's Kerberos 5 implementation, and how well it plays with other Kerberos distributions, such as
the one from MIT. Microsoft has provided a white paper at

http ://www.microsoft.com/windows2000/techinfo/planning/security/kerbsteps.asp on the varying levels of trust
that can be achieved between Active Directory and MIT Kerberos realms. If Kerberos is new to you, the following
web sites provide general information on its protocol and how it works:

e TheMIT Kerberos Project, http://web.mit.edu/kerberos/www/

e Windows 2000 Kerberos Authentication,
http ://www.microsoft.com/TechNet/prodtechnol/windows2000serv/deploy/kerberos.asp

Why is Kerberos mentioned in a chapter on directory interoperability? Because one of the first, and sometime the
most difficult, hurdles in directory interoperability is being able to access information without having to remember
which username and password goes with which service. While this isn't an interoperability problem in the strict
sense, practically speaking, your directory isn't worth much if it makes things harder for you and your users. When
Active Directory is part of the equation, there are two scenarios for using Kerberos authentication:

e Have the non-Microsoft clients use a Windows Kerberos authentication service (AS) for authentication.
e Establish a trust relationship between the Active Directory domain and a non-Microsoft Kerberos realm.

To implement the first solution, you can use PAM modules that support Kerberos tickets, or you can have the Unix
service function as a service principal in the Active Directory domain. The second solution is feasible only if an
existing Kerberos realm is in place.

I won't describe how to implement either of these solutions in detail because many of Microsoft's applications have
not been kerberized. For example, it would be convenient to search an OpenLDAP server from Microsoft Outlook
running on a member of an Active Directory domain without having to define an OpenLDAP-specific login
name/password combination. However, there's no configuration that allows current versions of Outlook to use the
GSSAPI SASL mechanism to authenticate when connecting to an OpenLDAP server.I31 Perhaps things will be easier
in the future. For now, Kerberos may or may not help in your directory interoperability needs. You will have to test
and decide for yourself.

31 The Kerberos administrators have confirmed that they can't come up with a working configuration, either.

[Team LiB | [<ereviovs)

http://www.microsoft.com/windows2000/techinfo/planning/security/kerbsteps.asp
http://web.mit.edu/kerberos/www/
http://www.microsoft.com/TechNet/prodtechnol/windows2000serv/deploy/kerberos.asp

[Team LB] [<ereviovs)

9.4 Distributed, Multivendor Directories

Standard protocols go a long way to promote interoperability. While the schema for representing an LDAP referral
can vary from vendor to vendor, the method of returning referral information to clients is defined as part of the
core LDAPv3 protocol. This means that LDAP servers from various vendors can be linked into a single, logical,
distributed directory.

But why go through all the trouble of building a multivendor directory? Why not settle on a single LDAP vendor,
who has no doubt made it easy to build distributed directories by developing schemas to represent referrals and
solving other problems that aren't addressed by the standards? And, as I've said elsewhere, we shouldn't use
technologies just because they're there; if LDAP doesn't make life easier for us as administrators, and for the users
of our systems, there’s little point going through the effort of setting up an LDAP directory at all, let alone a
distributed, multivendor directory.

However, sooner or later a single-vendor directory will force you to make decisions that you're uncomfortable with.
Let's assume that you're adding a new application server, such as a calendaring system, at your site. This server is
backed by an LDAP directory and requires certain protocol extensions from the directory. Naturally, the vendor has
tested the application server with a particular LDAP server in mind—perhaps the vendor even sells an LDAP
product (which, of course, is guaranteed to work with the calendar server). But as fate would have it, you've
already invested a lot of time and effort in building an LDAP directory, and the directory server that supports the
calendar server is not the directory server you've spent so much effort deploying. In this case, there are three
possible solutions:

e Abandon the calendar server, since it is not supported by your existing LDAP server. However, you're
probably installing the server because management wants you to do so; saying no probably isn't an option.

e Replace the existing directory with one that supports the calendar service. This solution probably doesn't
involve throwing out all the work you did getting your directory service running—but you will have to redo a
lot of it. And what happens the next time you're told to install an application that talks to an LDAP server?
Will it be compatible with the server you've installed for the sake of the calendar service? It's clear that this
isn't really an option, unless you want to spend your career playing "musical servers."

e Install a new LDAP server that supports the calendar application and include it as a subtree of your existing
directory framework.

The last option is really the only option that makes sense. It allows you to augment, rather than replace, the
directory infrastructure you've already built. Furthermore, sooner or later you will be forced to incorporate different
LDAP servers into your network. The goal of standardization is to enable clients developed by one company to
access servers developed by another; and even if this is presently a goal rather than a reality, your life will be
easier if you work with this goal in mind.

The addition of a new vendor-dependent, LDAP-enabled application raises an important question: how is this
solution any different than the myriad of application-specific directories of the past? The difference here is that
there is a single access protocol for all clients and administration tools. The LDAP protocol is the unifying factor.
While you still have applications that can talk only to a particular vendor's server, the common LDAP protocol
allows you to integrate that LDAP server with the other servers on the network.

The remainder of this section explores this solution by presenting a scenario in which an OpenLDAP server is
connected to an Active Directory installation. The goal is to create a virtual directory in which a user can search for
an entry anywhere by querying either of the directory services, without regard for which directory holds the
information.Figure 9-6 shows what we're trying to achieve.

Figure 9-6. Creating a single LDAP directory using a OpenLDAP and Active Directory

refiererce o
. 0o plainjve.org/de=phoinioe, dc=org

H

Windows Active Diractory
dc=ad,dc=plgln]na,du:=urg

S >
e el e e =i e =plaiioe, de=ovg

DpenliP
de=plainjoe.de=ong

For this exercise, you can assume the following facts:

e A working OpenLDAP has been configured with the naming context of dc=pl ai nj oe, dc=or g on the host
Idap.plainjoe.org.

e An Active Directory domain has been created for the DNS domain ad.plainjoe.org. Therefore, the Active
Directory LDAP service will have a naming context of dc=ad, dc=pl ai nj oe, dc=or g.

You need to add two knowledge references to this system. The first will point from the Active Directory service to

the OpenLDAP server; the second will refer client searches from the OpenLDAP directory to the Active Directory
domain.

TheADSI Edit MMC snap-in is needed to add an LDAP referral to Active Directory. This low-level, directory-
browsing utility is included in \SUPPORT\TOOLS on the Windows 2000 Advanced Server CD. Once the support tools

have been installed (using setup.exe), the ADSI Edit icon should appear in the Start Menu (Start - Programs
=3 Windows 2000 Support Tools =+ Tools =% ADSI Edit).

The referral from the Active Directory domain to the OpenLDAP server must be created inside the
cn=Partitions,cn=Confi gurati on, dc=ad, dc=pl ai nj oe, dc=0r g container. This directory entry is the root for
all entries possessing referrals to subdomains in an Active Directory tree, as well as external referrals explicitly
added by an administrator. After launching the ADSI Edit tool and navigating to the Partitions container, as
illustrated in Figure 9-7, create a new cr ossRef object by right clicking within the list of existing entries and
selecting the New b Object . . . variable from the context menu.

Figure 9-7. Creating a new crossRef object in the Partitions container of an Active Directory domain

EITE
= Comce Window Help

aon wew |+ - BE FH @

Tree |

(MmFtitions 3 Otrjectis)

=d ATS] Edi hiane: | Clans

* Dorresin P w20, plarvios org] EIM crosssf

- Confgumation Conbuiner [rndc.ad . planios. ong] Bm—éu-nmtmm erouslal
= | Ch=Configurstion [Wssd, D spisnjos, Domorg || W] CM=Enbarpriss Schams erossfsf

+ | M={splarSpachers Raraing...

| CM=Etended-Rights [T

it onfig

= Hew Connection From here:

F] MFevsical Locations:

#-] OMe=Sarvices

*] HeShes

= iewelnown Sacunity Princpasl:
= Schema [swndc.ad. plainios. org)

Criate & ram chijct

MStort| | L] @ 5 || H]%02 - Park < ADST 82 & 1z0em

A Create Object wizard helps you fill in the information for the object class's mandatory attributes. The following
LDIF excerpt shows what you're trying to accomplish: you need to add a node named OpenLDAP with an nCNamne
attribute that has the value dc=pl ai nj oe, dc=org, and a dnsRoot attribute that has the value

| dap. pl ai nj oe. org:

dn: cn=0OpenLDAP, cn=Partiti ons, dc=Confi guration,dc=ad, dc=pl ai nj oe, dc=org
cn: OpenLDAP

nCNane: dc=pl ai nj oe, dc=org

dnsRoot : |dap.pl ai nj oe. org

This new entry instructs the Active Directory server to return a referral of the form
| dap: // | dap. pl ai nj oe. or g/ dc=pl ai nj oe, dc=or g to clients in response to an LDAP search.

Next, a corresponding knowledge reference must be added to the OpenLDAP server. This reference must point to
the Active Directory domain. The following LDIF excerpt shows the reference you need to add to the OpenLDAP
server:

dn: dc=ad, dc=pl ai nj oe, dc=org

obj ectcl ass: referral

obj ectcl ass: dcOhj ect

ref: ldap://ad. plainjoe. org/dc=ad, dc=pl ai nj oe, dc=org
dc: ad

You can use Idapadd to add this entry. Assuming that the LDIF code is in the file ad-referral.ldif, the following
command will do the trick:

$ | dapadd -D "cn=Manager, dc=pl ai nj oe, dc=org" -w secret -x \
-H ldap://1dap.plainjoe.org/ -f ad-referral.ldif

Ther ef attribute in the new entry requires that the ad.plainjoe.org DNS name resolve to a domain controller in
the Active Directory domain. The AUXILIARY dcObj ect object class is included out of convention and due to a
choice of RDN attributes for the entry.

The two directories are now linked in such a way that an LDAP query sent to one directory should be able to locate
data stored in the other directory. To test this, start by sending an anonymous search to an Active Directory
domain controller and looking for data that's stored in OpenLDAP. To do this, use OpenLDAP's Idapsearch
command:

$ | dapsearch -H ldap://ad. plainjoe.org/ -x \
-b "ou=peopl e, dc=pl ai njoe, dc=org" -LLL "(uid=sjerry)"

Ref erral (10)
Addi tional information: 0000202B: Ref Err: DSl D-031005EE, data O, 1 access points
ref 1: 'ldap.plainjoe.org'

Ref erral : | dap://1 dap. pl ai nj oe. or g/ ou=peopl e, dc=pl ai nj oe, dc=org

You get a referral from the Active Directory server, but you don't get any actual results: this search does not follow
the referral. To see the actual results, you can perform the same search, but use the -C option to instruct the LDAP
client libraries to follow the referral and print out the final results:

$ | dapsearch -h ad.plainjoe.org -x -C\
-b "ou=peopl e, dc=pl ai njoe, dc=org" -LLL "(uid=jerry)"

dn: cn=Ceral d Carter, ou=peopl e, dc=pl ai njoe, dc=org
obj ectCl ass: posixAccount

obj ectCl ass: account

obj ectCl ass: sanbaAccount

cn: Gerald Carter

ui dNunber: 780

uid: jerry

gi dNunber: 100

honmeDirectory: /home/queso/jerry
| ogi nShel | : /bi n/bash

rid: 2560

acct Flags: [UX]

pwdLast Set: 1018451245

What about making a search that goes in the other direction? Can you send a search to OpenLDAP looking for data
stored in Active Directory? The answer is yes, but with the same caveat that was mentioned when using pam_Idap
to authenticate services against an Active Directory domain. By default, Active Directory does not support searches
using an anonymous bind, except for its rootDSE. Therefore, an attempt to locate a user named kristi in the Active
Directory domain without using some valid credentials in the bind would return only a referral to the Active
Directory server itself. Login names in Active Directory are stored under the SAMAccount Nane attribute.

$ | dapsearch -x -H |l dap://1dap.pl ai njoe.org/ \
-b "dc=ad, dc=pl ai njoe, dc=org" -LLL -C "(sAVAccount Name=kri sti)"

refldap://ad. plainjoe. org/ ON=Configuration, DC=ad, DC=pl ai nj oe, DC=or g

This referral was returned by the Active Directory server itself because you did not provide valid credentials for
searching deeper in the directory tree. If you would like to convince yourself that the OpenLDAP server is returning
the correct referral, simply rerun the search without the -C argument:

$ | dapsearch -H ldap://1dap. pl ainjoe.org/ -x\
-b "dc=ad, dc=pl ai njoe, dc=org" -LLL "(sAMAccount Name=kri sti)"

Ref erral (10)
Mat ched DN dc=ad, dc=pl ai nj oe, dc=or g
Ref erral : | dap://ad. pl ai nj oe. or g/ dc=ad, dc=pl ai nj oe, dc=or g??sub

To search Active Directory fully, you must employ some type of trust mechanism (e.g., Kerberos cross-realm
trusts) or single-signon solution between the two LDAP servers, or allow anonymous searches of portions of the
Active Directory DIT. Since anonymous searches of Active Directory were covered in Section 9.3, | won't revisit
that topic here.

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

9.5 Metadirectories

The term metadirectory describes just about any solution that joins distinct, isolated data sources into a single
logical volume. There are several popular metadirectory products on the market:

e MaXware MetaCenter (http://www.maxware.com/)

e SiemensDirXmetahub (http://www.siemens.ie/fixedoperators/CarrierNetworks/Meta/dirxmetahub.htm)

e Sun Microsystems SunOne (http://wwws.sun.com/software/products/meta_directory/home meta dir.html)

e Novell'seDirectory and DirXML combination (http://www.novell.com/products/edirectory/)

e Microsoft Metadirectory Services (http://www.microsoft.com/windows2000/technologies/directory/MMS)

For the sake of this section, we'll assume that a metadirectory is any directory service that presents an alternate
view of a data source. OpenLDAP's proxy backend provides a simple means of translating one directory server's
schema into a different view, suitable for particular client applications. There is no replication or synchronization of
data because the proxy provides only an alternate view of the target directory; the OpenLDAP server providing the
proxy doesn't actually store the data.

Imagine an email client that expects a directory service to provide an email address using the mai | attribute type.
Now consider that every user in an Active Directory domain is automatically assigned a Kerberos principal name of
the form username@domain. If the email domain is configured so that each user's email address and Kerberos

principal name (user Pri nci pal Nane) are synchronized (perhaps using an LDAP proxy service), then it makes no

sense to duplicate this information just to provide a directory-based address book for a picky email application.

) This scenario glosses over some details, such as where the mail domain stores email
~s addresses.
W M
N5

Before you can successfully create a proxy server, the Active Directory domain must meet the following
requirements:

e The Active Directory domain must be configured for the DNS domain ad.plainjoe.org.

e The DNS name ad.plainjoe.org must resolve to the IP address of an Active Directory domain controller for
that domain.

e An account named Idap-proxy must be created in the Active Directory domain for use by the proxy server
when binding to a Windows domain controller.

The OpenLDAP proxy feature isn't enabled by default; it must be enabled at compile time by specifying the
—enable-ldap and —enable-rewrite options to the configure script for slapd:

$ configure --enable-ldap --enable-rewite

After compiling and installing the new slapd executable, create the new LDAP database in slapd.conf. Remember
that a partition in slapd.conf begins with the dat abase directive and continues until the next database section or
the end of the file. The new proxy section begins with the declaration:

Proxy backend to access Active Directory.
dat abase | dap

This declaration tells slapd to acquire its data from another LDAP server, allowing it to act as a proxy for that
server. If OpenLDAP complains that | dap is not a valid database type, verify that —enable-ldap and —enable-
rewrite were actually used when compiling the server. Even though OpenLDAP will not store any actual data for

http://www.maxware.com/
http://www.siemens.ie/fixedoperators/CarrierNetworks/Meta/dirxmetahub.htm
http://wwws.sun.com/software/products/meta_directory/home_meta_dir.html
http://www.novell.com/products/edirectory/
http://www.microsoft.com/windows2000/technologies/directory/MMS

this partition, slapd must still be given the naming context of the database (ou=wi ndows, dc=pl ai nj oe, dc=or g)
using the standard suf f i X paramete:.

suf fix ou=wi ndows, dc=pl ai nj oe, dc=org

This is an arbitrary suffix; it does not correspond to the DN of users' container in Active Directory. The uri and
suf f i xmassage parameters tell slapd about the target directory (the directory being proxied) and the request
rewrite rules. Your server must replace the suffix ou=wi ndows, dc=pl ai nj oe, dc=or g with

cn=users, dc=ad, dc=pl ai nj oe, dc=or g before passing any request to the target server. If no rewriting should
be performed, the suf f i xmassage directive can be omitted.

uri | dap:// ad. pl ai nj oe. or g/
suf fi xmassage ou=wi ndows, dc=pl ai nj oe, dc=org
cn=user s, dc=ad, dc=pl ai nj oe, dc=or g

Thebi nddn and bi ndpw parameters provide a means of specifying the credentials to use when contacting the

remote LDAP directory. Here you use a simple bind. If your proxy server and remote server existed on opposite
sites on an insecure, or hostile, network, it would be prudent to modify the uri parameter to use LDAPS:

Active Directory also allows the userPrincipal Name val ue to be used in LDAP binds,
so this coul d be |dap-proxy@d. plainjoe. org.

bi nddn cn=l dap- pr oxy, cn=user s, dc=ad, dc=pl ai nj oe, dc=or g

bi ndpw pr oxy- secr et

OpenLDAP's proxy code only provides a way to map attributes and object classes defined by its local schema to
those stored in the target directory. The syntax for defining a mapping is:

map attribute|objectclass [local _name|*]foreign_name|*

Amap must define whether it applies to an attri but e or an obj ectcl ass. The name of the local attribute or
object class is optional, but remote names are required. The asterisk (*) character can be used to match any
name. Your proxy server should map Active Directory's sAMAccount Nane,nane, and user Pri nci pal Nane
attributes to the locally defined ui d,cn, and mai | attributes. You also need to map the local account object class
to the target user object class. Here are the map statements that perform the mapping:

Map t hese.

map attribute ui d sAMAccount Narre
map attribute cn name

map attribute nai | userPri nci pal Nane
map obj ectcl ass account user

Theproxy server can filter out any remaining attributes by mapping any remaining remote attributes to nothing:

Renove the rest.
map attribute *

To see the results of this mapping, compare the entry returned by querying Active Directory directly to the result
obtained by going through the OpenLDAP proxy. Here's what happens when you query Active Directory; the items
that will be provided by the proxy server are shown in bold:

$ | dapsearch -H ldap://ad. plainjoe.org -x \
-D |l dap-proxy@d. plai njoe.org -w proxy-secret -x \
-b "cn=users, dc=ad, dc=pl ai nj oe, dc=or g" -LLL \
"(sAVAccount Narme=kri sti)"

dn: CN=Kristi Carter,CN=Users, DC=ad, DC=pl ai nj oe, DC=or g
account Expi res: 9223372036854775807

badPasswordTi me: 0O

badPwdCount: 0

codePage: 0

cn: Kristi Carter

countryCode: O

di spl ayNane: Kristi Carter

givenNane: Joe

i nstanceType: 4

| ast Logoff: O

| ast Logon: O

| ogonCount: O

di sti ngui shedNane: CN=Kristi Carter,CN=Users, DC=ad, DC=pl ai nj oe, DC=or g
obj ect Cat egory: ON=Per son, CN=Schenma, CN=Conf i gurat i on, DC=ad, DC=pl ai nj oe, DC=or g
obj ectCl ass: top

obj ectCl ass: person

obj ectCl ass: organi zati onal Person

obj ectCl ass: user

obj ect GUI D : NDHKI 80YFkgqN8da3d 9a5Q= =

obj ectSid:: AQUAAAAAAAUVAAAAECNF czJi Hy pDFwoyUWQAAA= =
pri mryG oupl D 513

pwdLast Set: 126784120014273696

nane: Kristi Carter

sAVAccount Nane: kri sti

SAVAccount Type: 805306368

sn: Carter

user Account Control : 66048

user Pri nci pal Nane: kri sti@d. pl ai nj oe. org

uSNChanged: 2963

USNCr eat ed: 2957

whenChanged: 20021006210839. 0Z

whenCreat ed: 20021006210637. 0Z

Now, issue a similar query to the proxy server—except that you'll look up a ui d rather than an Active Directory
sAMAccount Nanme, and the root of your search will be the DN that you've assigned to the proxy. This time, the
search can be done anonymously. Here's the result:

$ | dapsearch -H ldap://1dap.plainjoe.org -x \
-b "ou=w ndows, dc=pl ai nj oe,dc=org" -LLL "(uid=kristi)"

dn: CNe=Kristi Carter,ou=w ndows, dc=pl ai nj oe, dc=org
obj ectCl ass: top

obj ectCl ass: person

obj ectCl ass: organi zat i onal Per son

obj ectCl ass: account

cn: Kristi Carter

uid: kristi

mai | : kristi @d. pl ai njoe.org

When you compare the two results, you will see that:

obj ectCl ass: user

name: Kristi Carter

sAMAccount Nane: kri sti

user Pri nci pal Nane: kri sti@d. pl ai nj oe. org

has been mapped to:

obj ectCl ass: account

cn: Kristi Carter

uid: kristi

mai | : kristi @d. pl ai njoe.org

The proxy server returns something slightly different if you remove the directive that filters all the attributes that
aren't explicitly mapped (mapattri but e*):

$ | dapsearch -H ldap://Idap.plainjoe.org -x \
-b "ou=w ndows, dc=pl ai nj oe,dc=org" -LLL "(uid=kristi)"

dn: CNeKristi Carter,ou=w ndows, dc=pl ai nj oe, dc=org
cn: Kristi Carter
di spl ayNane: Kristi Carter

mai | : kristi @d. pl ai njoe.org

givenName: Kristi

distingui shedName: CN=Kristi Carter,ou=w ndows, dc=pl ai nj oe, dc=org
obj ectCl ass: top

obj ectCl ass: person

obj ectCl ass: organi zati onal Per son

obj ectCl ass: account

cn: Kristi Carter

uid: kristi

sn: Carter

While this query returns more information than the previous one, it is obvious that slapd is still filtering some of
the attributes from the target entry. This filtering occurs because the attributes returned by the query are still
controlled by the local schema defined in slapd.conf. If the OpenLDAP installation does not understand a given
attribute or object class (for example, user Account Cont r ol), and it has not been mapped to a known local
schema item, the unknown value is filtered out.

The LDAP proxy backend supports updating the target directory, should you require it. It also supports local ACLs
in the LDAP database section; these ACLs can be used to control access to an LDAP proxy that presents a view of
the company's internal directory services to external clients. The slapd-Idap(5) manpage has more details on both
of these configuration possibilities.

[Team LiB] [<ereviovs)

[Team LB] [<ereviovs)

9.6 Push/Pull Agents for Directory Synchronization

Push/pull agents are common tools for synchronizing information between directories. In this case, a single agent
manually pulls information from one directory service and massages the data to make it acceptable for upload to
another directory server. Several directory vendors provide synchronization agents of this type in the form of
connectors and drivers. A connector transfers data from one directory to another (see Figure 9-8) using a common
format, often XML-based, while a driver translates the connector's data format to something understood by the
local directory.

Figure 9-8. Using a connector/driver solution for synchronizing data among different directory services

comactar transriring ot i divectary-speaiic
daba i comwman farma! ot

Directory A Diractory B

A partial list of commercial connector/driver offerings includes:

e SunOne'sXMLDAP (http://wwws.sun.com/software/products/directory srvr/)

e Novell'sDirXML (http://www.novell.com/products/edirectory/dirxml/)

The advantage that most commercial connector/driver solutions enjoy over in-house solutions is an inherent
knowledge of when data changes in the directory. This means that the directory can trigger the connector upon
any relevant change; in most cases, an external agent can detect a change only by polling the directory.

Despite this disadvantage, home-grown tools that act as middlemen between directory services can be very useful.
The next chapter focuses on how to script directory operations using Perl and the Net::LDAP module.

9.6.1 The Directory Services Markup Language

The Extensible Markup Language (XML) has been hyped as the next big thing for several years now. Whether or
not it has achieved its promise is a question | won't get into. LDAP has not been immune to the XML fever. The
Directory Services Markup Language (DSML) is an XML schema for representing LDAP information using document
fragments. DSML v1.0 could really only be described as an attempt to replace LDIF. With Version 2.0, however,
released in May of 2002, DSML has grown up and gained some new and interesting functionality.fil

[4] The latest information about DSML can be found at the OASIS Directory Services Technical Committee's
web page (http://www.oasis-open.org/committees/dsml/).

DSMLv2 is designed to provide methods for representing LDAP queries, updates, and the responses to these
operations in XML. This means that it would be possible for small, embedded devices to access LDAP services
without relying on an LDAP client library; they only need the ability to parse XML. Because XML-based standards
such as SOAP will only become more prevalent over time, the Oasis Directory Service TC has included a description
of how to embed DSML requests and responses into SOAP messages.

It's too early to provide concrete examples of how to use this technology. Version 1.0 is only mildly interesting,
and Version 2.0 of DSML is still in the early adopter phase. DSMLv2 will probably be accepted by the LDAP
marketplace. Sun Microsystems will include native support for the specification in the next release of its SunOne
Directory Server (Version 5.2). Microsoft is also developing a DSML development Kit; this product is currently
available as a beta release. Novell has also been very active in the development of DSML. All three companies
have members serving on the DSML technical committee.

[Team LB] [<ereviovs)

http://wwws.sun.com/software/products/directory_srvr/
http://www.novell.com/products/edirectory/dirxml/
http://www.oasis-open.org/committees/dsml/

[Team LB] [<ereviovs)

Chapter 10. Net::LDAP and Perl

No book on system administration is complete without some coverage of scripting. For many administrators, the
scripting language of choice is Perl. Perl is very good at dealing with text files (such as LDIF files), and many third-
party modules make it easy to accomplish complex tasks.I11

[1]1 For more information on Perl, visit the O'Reilly Perl web site at http://www.perl.com/ or the Perl Monger's
web site at http://www.perl.org/. If you're new to Perl, | recommend Learning Perl, by Randall Schwartz and
Tom Phoenix (O'Reilly) and Programming Perl, by Larry Wall, Tom Christiansen, and Randall Schwartz
(O'Reilly).

This chapter doesn't cover the basics of Perl programming. | assume that you are already comfortable with the
language and its fundamental concepts, such as regular expressions, but none of the examples will require the help
of a Perl guru for interpretation. Note that the scripts in this chapter are generally lax about conventions used in
production Perl code, such as the usestri ct pragma and variable scoping (e.g., ny or | ocal).

[Team LiB | [<ereviovs)

http://www.perl.com/
http://www.perl.org/

[Team LB] [<ereviovs)

10.1 The Net::LDAP Module

Two widely distributed Perl modules make it easy to write scripts that interact with an LDAP directory. One of
these is the PerLDAP module, written by Leif Hedstrom from Netscape Communications
(http://www.mozilla.org/directory/perldap.html). However, the last version was released in October of 2000.

A more active project, and the module that | discuss in this chapter, is Graham Barr's perl-ldap module (often
referred to as Net::LDAP). The examples in this chapter are based on Version 0.26 of this module. The module’s
home is located at http://perl-ldap.sourceforge.net/, but it's simpler to get it through the Comprehensive Perl
Archive Network (CPAN) at http://search.cpan.org. Before you install Net::LDAP, make sure that the following
modules are present:

URI

If you want to parse Idap:// URIs
Digest::MD5

For Base64 encoding
10::Socket::SSL

For LDAPS and StartTLS support
XML::Parser

To read and write DSML files
Authen::SASL

For SASL authentication support

All of these modules (and any of their requisite modules) can be downloaded from CPAN mirrors. As a convenience,
several of these modules have been packaged into a single module named Bundle::Net::LDAP, which can also be
download from CPAN.

_-'~ One of the easiest ways to ensure that all dependencies for a Perl module are met is to use
o the interactive shell provided by Andreas Koenig's CPAN module. After downloading and
)
‘. 4= installing this module from http://search.cpan.org/search?dist=CPAN, you can learn about

its features by executing the command perldocCPAN.

Programming with the Net::LDAP module is not tricky. You can discover a lot about it by typing the command
perldocNet::LDAP at a shell prompt; additional documentation can be found under Net::LDAP: :Examples and
Net::LDAP: :FAQ.

[Team LB] [<ereviovs)

http://www.mozilla.org/directory/perldap.html
http://perl-ldap.sourceforge.net/
http://search.cpan.org
http://search.cpan.org/search?dist=CPAN

[Team LB] [<ereviovs)

10.2 Connecting, Binding, and Searching

To get started with the Net::LDAP module, we will write a basic LDAP query script named search.pl. This script

illustrates the methods used to connect to a directory server and retrieve information. It begins by importing the
Net::LDAP symbols via the use pragma:

#!/ usr/ bi n/ perl
use Net : : LDAP;

After the module has been included, you can create a new instance of a Net: :LDAP object. To create a new
Net::LDAP instance, you need the hostname of the LDAP server to which the script should connect. The constructor
allows several optional arguments, of which the most common and useful are:

port
The TCP port on which the directory server is listening. If this parameter is not defined, it defaults to the
well-known LDAP port (389).

ver si on
The LDAP version to be used when connecting to the server. The default is Version 2 in the 0.26 release.
However, this is likely to change in the future. Always explicitly set the version parameter if your Perl
program replies with LDAPv3 features (such as SASL or referrals).

timeout

The time in seconds that the module should wait when contacting the directory server. The default value of
120 seconds is sufficient for most situations, but for more complex searches or when communicating with a
very large directory, it may be necessary to increase this value.

The next line of code establishes a connection to the host Idap.plainjoe.org on port 389 using Version 3 of the
protocol. The returned value is a handle to a Net::LDAP object that can be used to retrieve and modify data in the
directory.

$ldap = Net::LDAP->new ("l dap. plai njoe.org", port =>389,
version => 3);

The script can bind to the directory after it obtains a handle to the LDAP server. By default, Net::LDAP uses an
implicit anonymous bind, but it supports all the standard binds defined by the LDAPv3 RFCs (anonymous, simple,
and SASL). For now, we only examine how to use a simple bind.

However, before binding to the server, callstart _t| s() to encrypt the connection; you don't want to send the
user DN and password across the network in clear text. In its simplest form, the start _tl s() method requires
no parameters and appears as:

$ldap->start_tls();

Checking for Errors

Most of the Net::LDAP methods return an object with two methods for obtaining the function's return
status. The code() method retrieves the integer return value from the method call that created the
object, and the error () method returns a descriptive character string associated with the numeric
code. The constants for the various LDAP errors are contained in the Net::LDAP: :Constant module.
Specific error codes can be included in your code by adding a line similar to the following one:

use Net: : LDAP:: Const ant gw(LDAP_SUCCESS) ;
The following code tests for an error condition after some arbitrary LDAP call:

if ($result->code() != LDAP_SUCCESS) {
die $result->error();

}

Because most methods indicate success with a return code of zero, this error check can be shortened
to:

die $result->error() if $result->code();

TheNet::LDAP::Util module contains a few extra functions for obtaining more error information. The
| dap_error_text function returns the descriptive POD text for the error code passed in as a
parameter, and | dap_err or_name returns the constant name for an integer (for example, if it is
passed the integer O, it returns the string LDAP_SUCCESS).

It is a good idea to check for errors after attempting to establish a secure communication channel; ifstart _t| s(
) fails, and the script continues blindly, it might inadvertently transmit sensitive account information in the clear.
To do so, save the result object returned by start _tl s(), and then use the code() method to find out
whetherstart _tl s() succeeded:

$result = $l dap->start _tls();
die $result->error() if $result->code();

If the script tries to establish transport layer security with a server that does not support this extended operation,
the error check displays an error message and exits:

Operations error at ./search.pl |ine XXX
The actual error from Net::LDAP::Constant is LDAP_CPERATI ONS_ERROR

Now you can safely send the sensitive data to the server. A simple authenticated bind requires only a DN and a
password. If neither are provided, the call attempts to establish an explicit anonymous binding (as opposed to the
implicit bind used when bi nd() is not called at all). The following line seeks to bind your client to the directory as
the entry cn=Ceral dCart er, ou=peopl e, dc=pl ai nj oe, dc=or g using the password hel | 0. Once again, you
useerror() and code() to check the return status:

$result = $l dap->bi nd("cn=Geral d Carter, ou=peopl e, dc=pl ai njoe, dc=org",
password => "hel |l 0");
die $result->error() if $result->code();

If there is no error, the script is free to search the directory. The sear ch() method accepts the standard
parameters that are expected from an LDAP query tool. At this point, we're interested only in the base,scope,
andf il t er parameters. To make the script more flexible, use the first argument passed in from the command
line (i.e., search. pl "Gerald Carter") to build a filter string that searches for the user's common name (cn):

$nsg = $I dap- >sear ch(
base => "ou=peopl e, dc=pl ai nj oe, dc=or g",
scope => "sub",
filter => "(cn=$%ARCGV[O])");

The return value of the search is an instance of the Net::LDAP::Search object. You can manipulate this object to

retrieve any entries that matched the search. This object has a count () method that returns the number of
entries, and an all _entri es() method that returns the results as an array of Net::LDAP::Entry objects, each of
which represents information associated with a single directory node. You can view the results of this query by
dumping each entry from the array:

if ($msg->count() > 0) {
print $nsg->count(), " entries returned.\n";

foreach $entry ($nsg->all _entries()) {
$entry->dunp();
}
}

The output for a single entry looks like this:
dn: cn=Geral d Carter, ou=peopl e, dc=pl ai nj oe, dc=org

obj ect Class: inet OrgPerson
cn: Cerald Carter
sn: Carter
givenNane: Geral d
0: Hewl ett - Packard
nobi | e: 256. 555. 5309

nai | : jerry@l ainjoe. org
post al Address: 103 Sonewhere Street
| : Some Town
st: AL

post al Code: 55555-5555

Thedunp() routine is not meant to generate valid LDIF output, as can be seen from the extra whitespace added
to center the attribute/value pairs; another module, aptly named Net::LDAP::LDIF, handles that feature. We'll
discuss working with LDIF files later in this chapter. For now, just printing the attribute/value pairs in any form is
good enough.

What if you're interested only in a person's email address? Some entries contain many attributes, and asking a
user to look through all this output in search of an email address could qualify as cruel and unusual punishment.
How can you modify the script so that it displays only the attributes you want? The sear ch() function has an

optional parameter that allows the caller to define an array of attribute names. The search returns only the values
of attributes that match names in the list. Here's how to modify the script so that it retrieves only the mai | and cn

attributes:
$nsg = $l dap- >sear ch(
base => "ou=peopl e, dc=pl ai nj oe, dc=or g",
scope => "sub",
filter => "(cn=$ARGV[O0])",
attrs = ["cn", "mil"]);
And here's what you get when you dump the entry returned by the modified query:
dn: cn=CGeral d Carter, ou=peopl e, dc=pl ai nj oe, dc=org

cn: Cerald Carter
mai | : jerry@l ai nj oe. org

The last line of the script invokes the unbi nd() method to disconnect from the directory:

$l dap->unbi nd();

This routine effectively destroys the connection. The most portable means to rebind to an LDAP server using a new
set of credentials is to call bi nd() again with the new DN and password (but only when using LDAPv3). Once the

unbi nd() subroutine has been invoked, the connection should be thrown away and a new one created if needed.

The following listing shows the search.pl script in its entirety:

#!/ usr/ bi n/ perl

#it

Usage: ./search.pl name

#it

Author: Gerald Carter <jerry@l ainjoe.org>
#it

use Net : : LDAP;

Connect and bind to the server

$ldap = Net::LDAP->new ("l dap. plai njoe.org", port =>389
version => 3)

or die $!;

$result = $l dap->start _tls();
die $result->error() if $result->code();

$result = $I dap- >bi nd(
"cn=Cerald Carter, ou=peopl e, dc=pl ai nj oe, dc=or g"
password => "hell 0");
die $result->error() if $result->code();

Query for the cn and mail attributes.

$nsg = $I dap- >sear ch(
base => "ou=peopl e, dc=pl ai nj oe, dc=or g",
scope => "sub"
filter => "(cn=$ARGV[O0])",

attrs = ["cn", "mil"]);
Print resulting entries to standard output.

if ($msg->count() > 0) {
print $nsg->count(), " entries returned.\n";

foreach $entry ($nsg->all _entries()) {
$entry->dunmp();
}
}

Unbi nd and exit.
$l dap->unbi nd();

[Team LiB]

[Team LB] [<ereviovs)

10.3 Working with Net::LDAP::LDIF

Thesearch.pl script provided a simple introduction to retrieving data from an LDAP directory. However, the query
results represented the state of the directory at a single point in time. The script has no good way to save the
search results, and the way in which it prints the information is useful for humans, but not useful to any other
LDAP tools. You need the ability to save the results in a format that can be parsed by other LDAP tools: in other
words, you need to be able to read and write LDIF files directly from Perl code.

TheNet::LDAP::LDIF module provides the ability to work with LDIF files. To introduce Net::LDAP::LDIF, we'll
revisitsearch.pl and replace the call to dunp() with code to produce valid LDIF output. Your first modification to
the script is to add a second use pragma that imports the LDIF module:

use Net:: LDAP:: LD F;

Next, the script must create a new instance of a Net::LDAP::LDIF object. Output from this object can be linked to
an existing file handle such as STDOUT, as shown here:

$Idif = Net::LDAP:: LD F->new (STDOUT, "w")
or die $!;

It is possible to pass a filename to the new() method, as well as inform the module how this file will be used ("r "
for read, "w' for write + truncate, and "a" for write + append). This line of code creates an LDIF output stream
namedresult.ldif in the current directory:

$ldif = Net::LDAP.:LD F->new ("./result.ldif", "w')
or die $!;

It is best to use this code after you've run the search and confirmed that it produced some results. So, you open
the file after the script has tested that $nsg- >count () > O:

if ($msg->count() > 0) {
print $nsg->count(), " entries returned.\n";

$Idif = Net::LDAP:: LD F->new (scal ar<STDOUT>, "w')
or die $!;

Finally, replace the entire f or each loop that calls dunp() on each entry with a single call to the wite_entry(
) method of Net::LDAP::LDIF:

$ldif->wite_entry($nmsg->all _entries());

write_entry() accepts either a single Net::LDAP: :Entry or a one-dimensional array of these objects. The new
loop is:

if ($msg->count() > 0) {

print $nsg->count(), " entries returned.\n";

$Idif = Net::LDAP:: LD F->new (scal ar<STDOUT>, "w')
or die $!;

$ldif->wite_entry($nsg->all_entries());

}

Now the output of the script looks like this:

dn: cn=Geral d Carter,ou=contacts, dc=pl ai nj oe, dc=org
cn: Cerald Carter
mai | : jerry@anba. org

This doesn't look like a big change, but it's an important one. Because the data is now in LDIF format, other tools
such as Idapmodify can parse your script's output.

Once the script has created the LDIF output file, you can explicitly close the file by executing the done() method.
$ldi f->done();

This method is implicitly called whenever a Net::LDAP::LDIF object goes out of scope.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

10.4 Updating the Directory

Searching for objects in the directory is only the beginning. The real power of scripting is that it allows you to
modify the directory; you can add entries, delete entries, and modify existing entries.

10.4.1 Adding New Entries

The first script, import.pl, reads the contents of an LDIF file (specified as a command-line argument) and adds each
entry in the file to the directory. Here's a starting point; it resembles the last version of your search.pl script:

#!/ usr/ bi n/ perl

#it

Usage: ./inport.pl filename

#it

Author: Gerald Carter <jerry@l ainjoe.org>
#it

use Net : : LDAP;
use Net:: LDAP:: LD F;

Connect and bind to the server.

$ldap = Net::LDAP->new ("l dap. plai njoe.org", port =>389,
version => 3)

or die $!;

Secure data and credentials.
$result = $ldap->start_tls();
die $result->error() if $result->code();

Bind to the server. The account must have sufficient privileges because you will
be adding new entries.
$result = $I dap- >bi nd(
"cn=Directory Adm n, ou=peopl e, dc=pl ai nj oe, dc=org",
password => "secret");
die $result->error() if $result->code();

Open the LD F file or fail. Check for existence first.
die "$ARGV 0] not found!\n" unless (-f $ARGV[O0]);
$ldif = Net::LDAP:: LD F->new ($ARGV[0], "r")

or die $';

Once the script has a handle to the input file, you can begin processing the entries. Net: :LDAP::LDIF has an eof (
) method for detecting the end of input. The main loop continues until this check returns true.

while (! $ldif->eof) {
Get next entry and process input here.

}

Retrieving the next LDIF entry in the file is extremely easy because the Net::LDAP::LDIF module does all the work,
including testing the file to ensure that its syntax is correct. If the next entry in the file is valid, the r ead_ent r y(
) method returns it as a Net::LDAP::Entry object.

$entry = $ldif->read _entry();
If the call toread_entry() fails, you can retrieve the offending line by invoking the error _| i nes() routine:
if ($Sldif->error()) {

print "Error nmsg: ", $ldif->error(), "\n";
print "Error lines:\n", $ldif->error_lines(), "\n";

next ;

}

If no errors occur, the script adds the entry it has read from the file to the directory by invoking the Net::LDAP
add() method:

$result = $l dap->add($entry);
warn $result->error() if $result->code();

The final version of the loop looks like:

Loop until the end-of-file.
while (! $ldif->eof ()) {
$entry = $ldif->read _entry();

Skip the entry if there is an error.
if ($ldif->error()) {

print "Error msg: ", $ldif->error(), "\n";
print "Error lines:\n", $ldif->error_lines(), "\n";
next;

}

Log to STDERR and continue in case of failure.
$result = $l dap->add($entry);
warn $result->error() if $result->code();

}

Note that you test for an error after adding the entry to the directory. You can't assume that the entry was added
successfully on the basis of a successful return from read_entry().read_entry() guarantees that the entry
was syntactically correct, and gives you a valid Net::LDAP::Entry object, but other kinds of errors can occur when
you add the object to a directory. The most common cause of failure at this stage in the process is a schema
violation.

Now that you've finished the main loop, unbind from the directory server and exit:

$l dap->unbi nd();
exit(0);

10.4.2 Deleting Entries

The next script complements import.pl. It gives you the ability to delete an entire subtree from the directory by
specifying its base entry. The del et e() method of Net::LDAP requires a DN specifying which entry to delete. The
rmtree.pl script accepts a DN from the command line (e.g., rnmree. pl "ou=test, dc=pl ai nj oe, dc=org") and
deletes the corresponding tree.

How should you implement this script? You could simply perform a subtree search and delete entries one at a time.
However, if the script exits prematurely, it could leave nodes, or entire subtrees, orphaned. A disconnected
directory is very difficult to correct. A more interesting and only slightly more complex approach is to delete entries
from the bottom of the tree and work your way up. This strategy eliminates the possibility of leaving orphaned
entries because the tree is always contiguous: you delete only leaf entries, which have no nodes underneath them.

To implement bottom-up deletion, perform a depth-first search using recursion and allow Perl to handle the stack
for you. The Del et eLdapTr ee() subroutine introduced in this script deletes an entry only after all of its children
have been removed. It does a one-level search at the root of the tree to be deleted, and then calls itself on each of
the entries returned by that search.

#!/ usr/ bi n/ perl

#it

Usage: ./rnmree.pl DN

#it

Author: Gerald Carter <jerry@l ainjoe.org>
#it

use Net : : LDAP;

B SRR R R R R R R S R R S R R
Performa depth-first search on the $dn, deleting entries fromthe bottom up.
Paranmeters: $handle (handle to Net::LDAP object)
#it $dn (DN of entry to renove)
sub Del et eLdapTree {
ny ($handle, $dn) = @;
nmy ($result);

$nmsg = $handl e- >search(base => $dn
scope => one,
filter => "(objectclass=*)");
if ($nmsg->code()) {
$nsg->error();
return;

}

foreach $entry in ($nmsg->all _entries) {
Del et eLdapTree($handl e, $entry->dn());
}

$result = $handl e->del ete($dn);
warn $result->error() if $result->code();

print "Renoved $dn\n"

return,

}

The driver for this script begins by connecting to a directory server and binding to the server as a specific user with
appropriate privileges. By now, this code should be familiar:

Connect and bind to the server

$l dap = Net::LDAP->new ("l dap. plai njoe.org", port =>389,
version => 3)

or die $!;

Secure data and credentials.
$result = $l dap->start _tls();
die $result->error() if $result->code();

Bind to the server. The account nust have sufficient privileges because you will
be adding new entries.
$result = $I dap- >bi nd(
"cn=Directory Adm n, ou=peopl e, dc=pl ai nj oe, dc=org"
password => "secret");
die $result->error() if $result->code();

To begin the deletion process, the script verifies that the DN specified on the command line points to a valid
directory entry:

$nsg = $l dap- >search(base => $ARGV[0],

scope => base,

filter => "(objectclass=*)");
die $nsg->error() if $nsg->code();

Once assured that the entry does in fact exist, the script makes a single call to the recursive Del et eLdapTr ee()
routine, which does all the work:

Del et eLdapTree($l dap, $ARGV[O0]);
After the subtree is deleted, the script unbinds from the server and exits:

$l dap->unbi nd();

exit(0);
10.4.3 Modifying Entries

Now that you can add and delete entries, let's look at modifying data that already exists in the LDAP tree. There
are two routines for making changes to entries in the directory. The updat e() method of Net::LDAP pushes an
Ent ry object to the directory; to use this method, get a local copy of the Net::LDAP::Entry object you want to
modify, make your changes, and then push the change to the server. The nodi fy() method allows you to
specify a list of changes, and performs those changes directly on the server, eliminating the need to start by
obtaining a copy of the entry. Each mechanism has its own advantages and disadvantages. Pushing local changes
to the directory is more intuitive, but not as efficient. However, before discussing the pros and cons of these
approaches, you must become acquainted with the routines for manipulating a Net: :LDAP: :Entry client object.

10.4.3.1 Net::LDAP::Entry

The most common way to instantiate a Net: :LDAP::Entry object is to call the sear ch() method of Net::LDAP. If
you need a blank entry, you can create one by invoking the Net::LDAP::Entry constructor (i.e., new). You can print
the contents of an Entry by calling its dunp() method, but you can also create a custom printing method by using
various methods from the Net::LDAP::Entry and Net::LDAP::LDIF modules.

We'll start this new exercise by writing a custom printing function. The new function, named DunpEntry(),
accepts a Net::LDAP::Entry object as its only parameter. It then prints the entry's DN followed by each value of
each attribute that it contains. Here's a complete listing of DunpEntry():

sub DunpEntry {

ny ($entry) = @;
ny ($attrib, $val);

print $entry->dn(), "\n";

foreach $attrib in ($entry->attributes()) {
foreach $val in ($entry->get value($attrib)) {
print $attrib, ": ", $val, "\n";

}
This code introduces three new methods:
dn()

When called with no arguments, the dn() method returns the distinguished name of the entry as a

character string. If you pass it a parameter, that parameter is used to set the entry's DN.
attributes()

This method returns an array containing the entry's attributes.
get _val ue()

In its most basic form, the get _val ue() routine accepts an attribute name and returns an array of values
for that attribute.

:'_r_-‘; To find out more about the Ent r y methods, type the following command at a shell
o prompt:
[l 1

$ perldoc Net::LDAP::Entry

DunpEnt ry() acts just like the dunp() method, in that it prints only the attributes and values that are stored in
the local copy of the Net::LDAP::Entry object. Additional attributes may be stored in the directory.

Three methods manipulate an entry's attributes and values: add(),del ete(), and repl ace(). The add()

method inserts a new attribute or value into an entry object. The following line of code adds a new email address
for the entry represented by the scalar $e. If the attribute does not currently exist in the entry, it is added. If it

does exist, the new value is added to any previous values.
$e->add ("mail" => "jerry@lainjoe.org");

Theadd() method does not perform any schema checking because it is working only with a local copy of the
entry. If the mai | attribute is not supported by the object classes assigned to the entry, you won't find out until
you push the entry back to the directory server. Likewise, add() also allows you to assign multiple values to an
attribute that allows only a single value (for example, the ui dNunber attribute included in a posi xAccount).

Multiple values can be assigned to a single attribute by using an array:

$e->add("mail" => ["jerry@l ainjoe.org",
"jerry@anba.org"]);

Theadd() method also supports adding multiple attributes with a single call:

$e->add("mail" => "jerry@l ai njoe.org",
"cn" => "Cerald Carter");

To erase an attribute from a local entry, call del et e() . This method accepts the attribute names that should be
removed, either as a scalar value or as an array.

$e->delete (["mil", "cn"]);

It is possible to delete individual values from a multivalued attribute by passing an array of items to be removed.
Here, | remove only jerry@samba.org from the entry's email addresses:

$e->delete(mail => ["jerry@anba.org"]|);

Finally, you can delete an attribute (and all its associated values) and re-add it by calling r epl ace(). This
method accepts attribute/value pairs in a similar fashion as add(). The following line of code replaces all values
assigned to the nmi | attribute with the new address jerry@plainjoe.org. If the attribute does not exist, it is
inserted into the entry, just as if you had called add().

$e->replace("mail" => "jerry@lainjoe.org");

When working with a Net::LDAP: :Entry object, remember that the client instance is only a copy, and that any
changes you make affect only the local copy of the entry. The next section explains how to propagate these
changes to the directory.

10.4.3.2 Pushing an updated entry back to the server

No changes made to a local copy of a Net::LDAP::Entry object are reflected in the directory until its updat e()
method is called. To show how to update a directory, we will develop a simple script that allows a user to change
her password. The script makes two assumptions:

e Every user has an entry in the directory; a user's Unix login name matches the value of the ui d attribute
(e.g., a posi xAccount object).
e Every user can update their user Passwor d attribute values.

You need two additional modules for this program. Term::ReadKey allows you to read the user types without
displaying them on the screen. Digest::MD5 provides a routine to generate a Base64-encoded md5 digest hash of
a string. Here's how the script starts:

#!/ usr/ bi n/ perl

use Net: : LDAP;
use Term : ReadKey;
use Digest:: MXb gw nd5_base64) ;

You obtain the user's login name by looking up the UID of the running process (i.e., $<):

$user nane = get pwui d($>);
print "Changi ng password for user ", $username, "\n";

The script then performs some familiar LDAP connection setup:

$ldap = Net:: LDAP->new("l dap. plai njoe.org",
version => 3)
or die $';
$result = $ldap->start_tls();
die $result->error() if $result->code();

Next, the program implicitly binds to the directory anonymously and attempts to locate the entry for the current
user. The query is a subtree search using the filter (ui d=$usernane) . If the search finds multiple matches, it
returns only the first entry. If no entry is found, the script complains loudly and exits.

$nsg = $l dap- >sear ch(
base => "ou=peopl e, dc=pl ai nj oe, dc=or g",
scope => "sub",
filter => "(ui d=$usernane)");
die $nsg->error() if $nsg->code();
die "No such user in directory [$usernane]!\n"
if !$msg->count;

When you know that the user exists in the LDAP directory, prompt the user to type the old and new password
strings. Ask for the new string twice, and then ensure that the user typed the same thing both times:

Read old and new password strings. Use ReadMbde to prevent the passwords from
being echoed to the screen.

ReadMbde(' noecho');

print "Enter dd Password: ";
$ol d_passwd = chonp(ReadLi ne(0));
print "\ nEnter New Password: ";
$new_passwd = chonp(ReadLi ne(0));
print "\ nEnter New Password again: ";
$new_passwd2 = chonp(ReadLi ne(0));
print "\n";

ReadMVbde('restore');

Check that new password was typed correctly.
if ("$new passwd" ne "$new_passwd2") {
print "New passwords do not match!\n";

exit (1);
}
"_-‘ More tidbits and code samples using the Term::ReadKey and other Perl modules can be
s found in Perl Cookbook by Tom Christiansen and Nathan Torkington (O'Reilly).
wh oA
ek

To convert the Net::LDAP::Search results to a single Net: :LDAP::Entry object, the script calls the former's ent ry(
) method. This subroutine accepts an integer index to the array of entries produced by the previous search. In this
case, we are concerned only with the first entry—in fact, we are assuming that the search returns only one entry:

$entry = $neg->entry(0);

The array of entries is not sorted in any particular order, so if you're dealing with multiple entries, this method call
could conceivably return a different entry every time it is run. The best way to avoid this ambiguity is to choose an
attribute that is unique within the directory subtree rooted at the search base.

You now have both the DN of the user's entry and the old password value. At this point, you can authenticate the
user by binding to the directory server. If the bind fails, the script informs the user that the old password was

incorrect, and exits:

$result = $l dap->bi nd($entry->dn(),
password => $ol d_passwd);
die "Ad Password is invalid/\n" if $result->code();

All that remains is to update the user's password in the directory. This code is pretty trivial. The script uses the
nmd5_base64() function from the Digest::MD5 module to generate the new password hash:

Generate Base64 nd5 hash of the new passwd.
$md5_pw = "{MXB}" . nd5_baseb64($new passwd) . "= =";

The "= =" is appended to the password hash to pad the digest string so that its length is a multiple of four bytes.
This is necessary for interoperability with other Base64 md5 digest strings and is described in the Digest::MD5
documentation. Next, overwrite the old password value by calling r epl ace():

$ent ry->repl ace(userPassword => $nd5_pw) ;

To propagate the change to the directory, call the updat e() method. This method accepts a handle to the
Net::LDAP object representing the directory server on which the update will be performed.

$result = $entry->update($l dap);
die $result->error() if $result->code();

Now inform the user that her password has been updated, and exit:

print "Password updated successful |l y\n";
exit (0);

When executed, the output of passwd.pl looks similar to the standard Unix passwd utility:

$./ passwd. pl

Changing password for user jerry
Enter O d Password: secret

Ent er New Password: new-secret

Ent er New Password agai n: new-secr et
Passwor d updated successful ly

10.4.3.3 Modifying directory entries

Although LDAPv3 does not specify support for transactions across multiple entries, the RFCs indicate that changes
to a single entry must be made atomically. When and why would you care about atomic updates? Assume that, on
your network, all user accounts are created in a central LDAP directory using the posi xAccount object class.
Since it's a large network, you have several administrators, each of which may need to perform user management
tasks at any time. You need to guarantee that their user management tool always obtains the next available
numeric UID and GID without having to be concerned that two scripts running concurrently obtain the same ID
number.

At this point, using the directory to store the currently available UID and GID values is the proverbial "no-brainer."
What you need is a subroutine to retrieve the next free ID number and then store the newly incremented value.
This operation must be atomic—that is, there must be no way for some other script to sneak in after you've read a
value and read the same (unincremented) value. To support this, you need to introduce two new object classes,
one for the ui dPool and one for the gi dPool . The schema for these two objects is illustrated in Figure 10-1.

Figure 10-1. uidPool and gidPool object classes

objectClassuidPool

Bequived altribute — | o
uichumber

objectilassgidFool

Eequired attribute —|
gidhuber

Here's the implementation of the get _next _ui d() function. It requires a handle to a Net::LDAP object as its
only parameter. get _next _gi d() is almost identical; I'll leave it to you to make the necessary modifications.

HHEH R R R R R R R R R R
Get the next available U D fromthe idPool. Spin until you get one.
##t
sub get _next_uid {
ny ($ldap) = @;
ny ($uid, $nsg, $entry);
my (@dd, @elete, @hanges);

The logic of the function is:

e Retrieve the next available ui dNunber value from the ui dPool entry.

e Issue an LDAP modify request that attempts to delete the original ui dNunber value, and store the old value
incremented by 1 as the new ui dNunber .

e If the update fails, repeat the entire process until the modification succeeds.

The search and update steps are wrapped in ado . . . while loop to ensure that you have a valid UID upon exit.
You perform a one-level search because the ui dPool object is assumed to be stored directly under the search
base (e.g., dc=pl ai nj oe, dc=org). The actual location of the pool in the directory is an arbitrary choice, of course.
If the search fails, either by returning an error or because of an empty list, get _next _ui d() fails and returns an
invalid UID value (- 1):

do {
$nsg = $l dap->sear ch(
base => "dc=pl ai nj oe, dc=or g",
scope => "one",
filter => "(objectclass=uidPool)");
if ($nsg->code) {
war n $nsg- >error;
return -1;

}

if (! $nsg->count) {
warn "Unabl e to locate ui dPool entry!";
return -1;

}

To obtain the next available ID number, the function grabs the ui dNunber attribute from the first entry returned
by the sear ch() call. The ui dNunber attribute defined by the RFC 2307 schema is single-valued, so
get _val ue() always returns a scalar value in this context:

$nmsg->entry(0);

$entry =
= $entry->get _val ue('uidNunber');

$ui d
The Net: :LDAP =*nodi f y() method requires the DN of the entry to be changed as the first parameter:
nmodi f y(DN, options);

Theopt i ons specify which type of update to perform: add,del et e,r epl ace, or changes. The first three options
accept a reference to a hash table of attributes and values. For example, this call deletes the mail attribute value

jerry@l ainjoe.org:

$l dap->nodi fy($entry->dn(),
delete = ["mail' => "jerry@lainjoe.org"]);

A single nodi fy() call can make multiple changes of different types. Here, you delete an email address and add
a phone number:

$l dap->nodi fy($entry->dn(),
delete = { "mail' => "jerry@lainjoe.org" },
add => { 'telephoneNunber' => '555-1234" });

Using separate add and del et e parameters, there are no guarantees about which update will be applied first, only

that all the updates will be combined into a single LDAP modify message. The ordering of changes is important to
get _next _ui d() because the delete must precede the add. For this reason, get _next _ui d() uses the
changes parameter instead because it allows the programmer to specify how the modifications will be applied.

Thechanges option specifies a nested array of updates. At the top dimension of the array is a pair of items: the
first is the modification type (add,del et e, or r epl ace), and the second is a reference to an array composed of
attribute/value pairs. The add and del et e options in the previous example can be represented using the changes
option like so:

$l dap->nodi fy($entry->dn(), changes =>
["delete, ["mail', '"jerry@lainjoe.org],
"add', ['tel ephoneNunmber', '555-1234'"]]);

It is often easier to understand these updates if they are placed in an actual array, rather than using an
anonymous reference. The following code from get _next _ui d() uses three arrays to store the changes. The

first stores the delete request, the second stores the add request, and the third stores references to the previous
two after indicating the type of change:

push (@el ete, 'uidNunber', $uid);
push (@\dd, 'uidNunmber', S$uid+1);
push (@hanges, 'delete', \@elete);
push (@hanges, 'add , \@\dd);

$result = $l dap->nmodify($entry->dn(),
'changes' => [@hanges]);

If the modi fy() call fails, the script assumes that the delete operation failed because the ui dNunber value did
not match. Therefore, the $ui d variable is set to - 1 so that the loop will repeat:

if ($result->code) { $uid = -1}
} while ($uid = = -1);
Finally, the routine returns the valid numeric UID to the caller:

return $uid;

}

To wrap things up, here is the get _next _ui d() function in its entirety:

HH AT A A R R R R
Get the next available U D fromthe idPool. Spin until you get one.
#i#
sub get _next _uid {
my ($ldap) = @;
ny ($uid, $nsg, Sentry);
my (@dd, @xelete, @hanges);

do {
Get the uidPool entry and performerror checking.
$nsg = $l dap->sear ch(

base => "dc=pl ai nj oe, dc=or g",

scope => "one",

filter => "(objectclass=uidPool)");

if ($nsg->code) {
warn $nsg- >error;
return -1;

}

if (! $nsg->count) {
warn "Unabl e to |ocate ui dPool
return -1;

}

Get the next U D
$entry = $nsg- >entry(0);

entry!l";

$uid = $entry->get _val ue(' ui dNunber'

Put the changes together to update the next U D in the directory.

push (@elete, 'uidNunber', $uid);

push (@dd, 'uidNunmber', S$uid+1);

push (@hanges, 'delete', \@elete);

push (@hanges, 'add , \@\dd);

Update the directory.

$result = $l dap->nodify($entry->dn(

' changes' => [@hanges]);

if ($result->code) { $uid = -1}

Do you need anot her round?
} while ($uid = = -1);

Al done
return $uid;

}

This function would be invoked in a fashion similar to:

if (($nextuid=get next _uid($ldap)) = =
print "Unable to generate new uid!'\n"
exit 1;

}
[Team LiB]

_1)

[Team LB] [<ereviovs)

10.5 Advanced Net::LDAP Scripting

At this point, we've covered all the basics: binding to a server, reading, writing, and modifying entries. The
remainder of the chapter covers more advanced programming techniques. We'll start by discussing how to handle
referrals and references returned from a search operation.

10.5.1 References and Referrals

It's important for both software developers and administrators to understand the difference between a reference
and a referral. These terms are often confused, probably because the term "referral” is overused or misused. As
defined in RFC 2251, an LDAP server returns a reference when a search request cannot be completed without the
help of another directory server. | have called this reference a "subordinate knowledge reference" earlier in this
book. In contrast, a referral is issued when the server cannot service the request at all and instead points the client
to another directory that may have more knowledge about the base search suffix. | have called this link a "superior
knowledge reference" because it points the client to a directory server that has superior knowledge, compared to
the present LDAP server. These knowledge references will be returned only if the client has connected to the
server using LDAPV3; they aren't defined by LDAPV2.

A Net::LDAP search returns a Net: :LDAP::Reference object if the search can't be completed, but must be
continued on another server. In this case, the reference is returned along with Net::LDAP::Entry objects. If a
search requires a referral, it doesn't return any Entry objects, but instead issues the LDAP_REFERRAL return code.
Both references and referrals are returned in the form of an LDAP URL. To illustrate these new concepts and their
use, we will now modify the original search.pl script to follow both types of redirection. As of Version 0.26, the
Net::LDAP module does not help you follow references or referrals—you have to do this yourself.

To aid in parsing an LDAP URL, use the URI::ldap module. If the URI module is not installed on your system, you
can obtain it from http://search.cpan.org/.LDAP_REFERRAL is a constant from Net::LDAP::Constant that lets you
check return codes from the Net::LDAP sear ch() method.

#!/ usr/ bi n/ perl

Usage: ./fullsearch.pl name

#it

Author: Gerald Carter <jerry@l ainjoe.org>
#it

use Net:: LDAP gqw(LDAP_REFERRAL) ;

use UR ::ldap;

The script then connects to the directory server:

$ldap = Net::LDAP->new ("I dap. pl ai njoe.org",
port => 389,
version => 3)

or die $!;

To simplify the example, we will omit the bi nd() call (from the original version of search.pl) and bind to the
directory anonymously. We'll also request all attributes for an entry rather than just the cn and mai | values. The
cal | back parameter is new. Its value is a reference to the subroutine that should process each entry or reference
returned by the search:

$nsg = $l dap- >sear ch(
base => "ou=peopl e, dc=pl ai nj oe, dc=or g",
scope => "sub",
filter =>"(cn=$ARGV 0])",
cal | back => \&ProcessSearch);

ProcessReferral ($msg->referrals())
if $msg->code() = = LDAP_REFERRAL;

http://search.cpan.org/

This code does two things: it registers ProcessSear ch() as the callback routine for each entry or reference
returned from the search and calls ProcessReferral () if the server replies with a referral. Both of these
subroutines will be examined in turn.

All callback routines are passed two parameters: a Net::LDAP::Message object and a Net::LDAP::Entry object.
ProcessSear ch() has two responsibilities: it prints the contents of any Net::LDAP::Entry object and follows the
LDAP URL in the case of a Net::LDAP::Reference object. The ProcessSear ch() subroutine begins by assigning
values to $nsg and $result. If $result is not defined, as in the case of a failed search, ProcessSear ch() can
return without performing any work.

sub ProcessSearch {
ny ($msg, $result) = @;

Nothing to do
returnif (! defined($result));

If$resul t exists, it must be either a Reference or an Entry. First, check whether it is a Net::LDAP::Reference. If it
is, the URL is passed to the Fol | owJRL() routine to continue the search. The Net::LDAP: :Reference
ref erences() method returns a list of URLs, so you will follow them one by one:

if ($result->isa("Net::LDAP:: Reference")) {
foreach $link ($result->refererences()){
Fol | owURL($link);
}
}

If$resul t is defined and is not a Net::LDAP::Reference, it must be a Net::LDAP::Entry. In this case, the routine
simply prints its contents to standard output using the dunmp() method:

else {
$result->dump();
print "\n";

}

}

TheFol | owJRL() routine merits some discussion of its own. It expects to receive a single LDAP URL as a
parameter. This URL is stored in a local variable named $ur | :

sub Fol | owURL {

ny ($url) = @;
ny ($l dap, $nsg, $link);

Next,Fol | owURL() creates a new URI::ldap object using the character string stored in $ur | :

print "$url\n";
$link = UR::ldap->new($url);

A URI::ldap object has several methods for obtaining the URL's components. We are interested in the host (),
port(), and dn() methods, which tell us the LDAP server's hostname, the port to use in the new connection,
and the base search suffix to use when contacting the directory server. With this new information, you can create a
Net::LDAP object that is connected to the new server:

$ldap = Net::LDAP->new($Iink->host(),
port => $link->port(),
version => 3)

or { warn $!; return; };

The most convenient way to continue the query to the new server is to call sear ch() again, passing
ProcessSear ch() as the callback routine. Note that this new search uses the same filter as the original search,
since the intent of the query has not changed.

$nsg = $l dap->search(base => $link->dn(),
scope => "sub",
filter => "(cn=$ARGV[0])",

call back => \ &rocessSearch);
$nmsg->error() if $nsg->code();

}

The first time you called sear ch(), you tested to see whether the search returned a referral. Don't perform this
test within Fol | owLi nk() because the LDAP reference should send you to a server that can process the query. If
the new server sends you a referral, choose not to follow it. Be aware that there are no implicit or explicit checks in
this code for loops caused by chains of referrals or references.

Now let's go back and look at the implementation of ProcessReferral () .Net::LDAP::Message provides several
methods for handling error conditions. In the case of an LDAP_REFERRAL, the ref erral s() routine can be used
to obtain a list of LDAP URLs returned from the server. The implementation of ProcessReferral () is simple
because you've already done most of the work in Fol | owJRL() ; it's simply a wrapper function that unpacks the
list of URLs, and then calls Fol | owJRL() for each item:

sub ProcessReferral {

ny (@inks) = @;

foreach $link (@inks) {
Fol | owURL($1 i nk) ;
}
}

When executed, fullsearch.pl produces output such as:

$./fullsearch.pl "test*"

dn: ui d=t est user, ou=peopl e, dc=pl ai nj oe, dc=org

obj ect Cl ass: posi xAccount
ui d: testuser
ui dNunber: 1013
gi dNunber: 1000
homeDirectory: /hone/tashtegol/testuser
| ogi nShel | : / bi n/ bash
cn: testuser

| dap: // t asht ego. pl ai nj oe. or g/ ou=t est 1, dc=pl ai nj oe, dc=org

dn: cn=t est user, ou=test 1, dc=pl ainj oe, dc=or g

obj ectCl ass: person
sn: user
cn: test user

10.5.2 Scripting Authentication with SASL

In previous releases, the Authen::SASL package was bundled inside the perl-ldap distribution. Beginning in January
of 2002, the Authen::SASL code became a separate module, supporting mechanisms such as ANONYMOUS ,CRAM-
MD5, and EXTERNAL. There is another SASL Perl module also available on CPAN, Authen::SASL::Cyrus by Mark
Adamson, that uses the Cyrus SASL library. This is the one you will need if you are interested in the GSSAPI
mechanism. Both modules use the same Authen::SASL framework and can be installed on a system without any
conflict.

Probably the most common use of the GSSAPI SASL mechanism is to interoperate with Microsoft's implementation
of Windows Active Directory. Chapter 9 discussed several interoperability issues between this server and non-
Windows clients.

Updating the search script that I've developed throughout this chapter provides an excellent means of illustrating
the GSSAPI package and Perl-Idap's SASL support. The only piece of code that needs to be modified is the code
that binds to the directory server. Assume that you need to bind to a Windows domain with a domain controller
namedwindc.ad.plainjoe.org. The Kerberos realm is named AD.PLAINJOE.ORG, and you'll use the principal

jerry @AD.PLAINJOE.ORG for authentication and authorization.

First, the revised script must include the Authen::SASL package along with the familiar Net: :LDAP module:

use Net : : LDAP;
use Aut hen:: SASL;

To bind to the Active Directory server using SASL, the script must create an Authen::SASL object and specify the
authentication mechanism:

$sasl = Aut hen:: SASL->new(' GSSAPI',
cal I back => { user => "jerry@WD. PLAINJCE. ORG });

New Authen::SASL objects require a mechanism name (or list of mechanisms to choose from) and possibly a set of
callbacks. These callbacks are used to provide information to the SASL layer during the authentication process. The
GSSAPI mechanism will be handled by Adamson’s module, which currently supports a limited set of predefined
callback names.[21 The user callback used here is very simple; you just return the string containing the name of
the account used for authentication. More information on callbacks can be found in the Authen::SASL
documentation.

[2]1 The callback names supported in Authen::SASL::Cyrus-0.06 are user,auth, and language.

The code to create a new LDAP connection to the server is identical to the previous scripts that used simple binds
for authentication. Remember that SASL requires the use of LDAPv3; hence the ver si on => 3 parameter.

$ldap = Net::LDAP->new('wi ndc. ad. plainjoe.org',
port => 389
version => 3)

or die "LDAP error: $@n";

At this point, you can bind to the directory server. There is no need to specify a DN to use when binding because
authentication is handled by the KDC and Kerberos client libraries.

$nmsg = $l dap->bind("", sasl => $sasl);
$nsg- >code && die "[", $nBQg->code(), "] ", $nmsg->error;

You also need to modify the search script to use the base suffix that Active Directory uses for storing user
accounts. In this case, the required suffix is cn=user s, dc=ad, dc=pl ai nj oe, dc=org. If you try running the
SASL-enabled search script, chances are that the result will be a less-than-helpful error message about a decoding
failure:

$./sasl search. pl ' Geral d*'
[84] decode error 28 144 at /usr/lib/perl5/site perl/5.6.1/Convert/ ASNL/ _decode. pm
line 230.

The most common cause of this failure is the lack of a TGT from the Kerberos KDC. A quick check using the klist
utility proves that you have not established your initial credentials:

$ klist -5
klist: No credentials cache file found (ticket cache FILE:/tnp/ krb5cc_780)

Ifklist shows that a TGT has been obtained for the principal @REALM, another frequent cause of failure is clock
skew between the Kerberos client and server. The clocks on the client and server must be synchronized to within
five minutes.

Assuming that the failure occurred because you didn't establish your credentials, you need to run Kkinit to create
the credentials file:

$ kinit
Password for jerry@\D. PLAI NJCE. CRG

Now when klist is executed, it shows that you have a TGT for the Windows domain:

$ klist -5
Ticket cache: FILE:/tnp/krb5cc_780
Def ault principal: jerry@D. PLAINJCE ORG

Valid starting Expires Servi ce princi pal
06/ 27/02 18:27: 04 06/28/02 04:27: 04
krbt gt/ AD. PLAI NJCE. ORG@AD. PLAI NJCE. CRG

This time, saslsearch.pl returns information about a user. I've trimmed the search output to save space.

$./sasl search. pl ' Geral d*'

dn: CN=Gerald W Carter, CNeUser s, DC=ad, DC=pl ai nj oe, DC=org

cn: CGerald W Carter
objectd ass: top
per son
or gani zati onal Per son
user
pri mryG ouplD: 513
pwdLast Set: 126696214196660064
name: CGerald W Carter
sAMAccount Nane: jerry
sn: Carter
user Account Control : 66048
user Princi pal Narme: jerry@d. pl ai nj oe. org

10.5.3 Extensions and Controls

As mentioned in previous chapters, controls and extensions are means by which new functionality can be added to
the LDAP protocol. Remember that LDAP controls behave more like adverbs, describing a specific request, such as
asorted search or a sliding view of the results. Extensions act more like verbs, creating a new LDAP operation. It is
now time to examine how these two LDAPv3 features can be used in conjunction with the Net::LDAP module.

10.5.3.1 Extensions

TheNet::LDAP: :Extension and the Net: :LDAP::Control classes provide a way to implement new extended
operations. Past experience indicates that new LDAP extensions that are published in an RFC have a good chance
of being included as a package or method in future versions of the Net: :LDAP module. The Net::LDAP —

start _tls() routine is a good example. Therefore, you may never need to implement an extension from
scratch. However, it is worthwhile to know how it can be done.

Graham Barr posted this listing on the perl-ldap development list (perl-ldap-dev@sourceforge.net), discussing how
to implement the Password Modify extension:[31

[31 For more information on the Password Modify extension and how it works, refer to RFC 3062.

package Net: : LDAP: : Ext ensi on: : Set Password,;

requi re Net: : LDAP: : Ext ensi on;
@ SA = gw(Net :: LDAP: : Ext ensi on) ;

use Convert:: ASN1,

ny $passwdvbdReq = Convert: : ASN1- >new;,

$passwdModReq- >prepar e(g<SEQUENCE {
user [1] STRING OPTI ONAL,
ol dpasswd [2] STRING OPTI ONAL,
newpasswd [3] STRING OPTI ONAL

}>)

nmy $passwdvbdRes = Convert : : ASN1- >new,
$passwdModRes- >prepar e(g<SEQUENCE {
genPasswd [0] STRING OPTI ONAL
}>);

sub Net:: LDAP:: set _password {

ny $ldap = shift;
ny %pt = @;

ny $res = $l dap- >ext ensi on(
name => '1.3.6.1.4.1.4203.1.11.1',
val ue => $passwdMdReq- >encode(\ %opt));

bless $res; # Naughty :-)

sub gen_password {
ny $self = shift;

my $out = $passwdvbdRes- >decode($sel f - >response) ;
$out - >{ genPasswd};
}

1

The Net::LDAP =%*ext ensi on() method requires two parameters: the OID of the extended request (e.g.,
1.3.6.1.4.1.4203.1.11.1) and the octet string encoding of any parameters defined by the operation. In this case,
theval ue parameter contains the user identifier, the old string, and the new password string.

The$passwor dMbdReq and $passwor dMbdRes variables are instances of the Convert::ASN1 class and contain the
encoding rules for the extension request and response packets. The encoding rule specified in this example was
taken directly from the Password Modify specification in RFC 3062. The Convert::ASN1 module generates
encodings compatible with LBER, even though it uses ASN.1. For more information on Convert::ASN, refer to the
module's installed documentation.

The good news is that it's easy to invoke the extension by executing:

$nsg = $l dap- >set_password(user => "usernane",
ol dpassword => "ol d",
newpassword => "new');

10.5.3.2 Controls

Many controls also end up being implemented as Net::LDAP classes. The following controls are included in perl-ldap
0.26:

Net::LDAP: :Control::Paged

Implementation of the Paged Results control used to partition the results of an LDAP search into manageable
chunks. This control is described in RFC 2696.
Net::LDAP: :Control::ProxyAuth

Implementation of the Proxy Authentication mechanism described by the Internet-Draft draft-weltman-
Idapv3-proxy-XX.txt. This control, supported by Netscape's Directory Server v4.1 and later, allows a client
to bind as one entity and perform operations as another.

Net::LDAP::Control::Sort,Net::LDAP: :Control:: SortResult

Implementation of the Server Side Sorting control for search results described in RFC 2891.
Net::LDAP::Control::VLV,Net::LDAP: :Control::VLVResponse

Implementation of the Virtual List View control described in draft-ietf-ldapext-ldapv3-vIv-XX.txt. This control
can be used to view a sliding window of search results. This feature is often used by address book
applications.

Using the built-in controls is really just a matter of reading the documentation and following the right syntax. To
show how to use these Control classes, we will extend the saslsearch.pl script used to search a Windows AD
server.

In order to work around the size limits for searches and return large numbers of entries in response to queries, AD
servers (and several other LDAP servers) support the Paged Results control, which is implemented by the

Net::LDAP::Control::Paged class. The idea behind this control is to pass a pointer, or cookie, between the client
and server to keep track of which results have been returned and which are left to process. To help make the
implementation a little easier to swallow, we'll break the search operation into a separate function. The subroutine,
calledDoSear ch(), expects two input parameters: a handle to a valid Net: :LDAP object already connected to the
server, and a DN that will be used as the base suffix for the search:

sub DoSearch {

ny ($ldap, $dn) = @;
ny ($page, S$ctrl, S$cookie, $i);

The Paged Results control requires a single parameter: the maximum number of entries that can be present in a
single page. In this example, you'll set the number of entries set to 4, which is more convenient for demonstration;

a production script would want more entries per page:
$page = Net::LDAP:.: Control:: Paged- >new(size => 4);

To verify that the search is being done in pages, maintain a counter and print its value at the end of each iteration
(i.e., every time you read a page of results). The loop will run until all entries have been returned from the server,
or there is an error.

$i = 1;
while (1) {

After the Net::LDAP::Control::Paged object has been initialized, it must be included in the call to the Net::LDAP
=—>sear ch() method. The cont rol parameter accepts an array of control objects to be applied to the request.

$nsg = $l dap- >search(base => $dn,
scope => "sub",
filter => "(cn=$ARGV[0])",
call back => \ &rocessSearch,
control =>[$page]);

The use of an LDAP control in the search does not affect the search return codes, so it is still necessary to process
any referrals or protocol errors:

Check for a referral.
if ($nsg->code() = = LDAP_REFERRAL) {
ProcessReferral ($nmsg->referrals());
}
Any other errors?
elsif ($nsg->code()) {
$nsg->error();
| ast ;

}

Finally, you need to obtain the cookie returned from the server as part of the previous search response. This value
must be included in the next search request so the server will know at what point the client wants to continue in
the entry list.

Handl e t he next set of paged entri es.
($ctrl) = $nsg->control (LDAP_CONTROL_PAGED)

or | ast;
$cookie = $ctrl->cookie()
or | ast;

$page->cooki e($cookie);
At the end of the loop, print the page number:

print "Paged Set [$i]\n";
$i ++;

}

Here's what the output looks like:

$./ pagedsearch.pl '*'" | egrep '(dn|Paged)’

dn: CN=Users, DC=ad, DC=pl ai nj oe, DC=0r g

dn: CN=Gerald W Carter, CNeUser s, DC=ad, DC=pl ai nj oe, DC=org
dn: CN=Tel net Cl i ent s, ON=User s, DC=ad, DC=pl ai nj oe, DC=or g

dn: CN=Admi ni strator, ON=User s, DC=ad, DC=pl ai nj oe, DC=or g
Paged Set [1]

dn: CN=Guest , CN=User s, DC=ad, DC=pl ai nj oe, DC=o0rg

dn: CN=Tsl nt er net User , CN=User s, DC=ad, DC=pl ai nj oe, DC=or g

dn: CN=kr bt gt , ON=Wser s, DC=ad, DC=pl ai nj oe, DC=or g

dn: CN=Domai n Conput ers, CN=User s, DC=ad, DC=pl ai nj oe, DC=or g
Paged Set [2]

dn: CN=Domai n Control |l ers, CN=Users, DC=ad, DC=pl ai nj oe, DC=or g
dn: CN=Schenma Adm ns, ON=User s, DC=ad, DC=pl ai nj oe, DC=or g

dn: CN=Ent er pri se Adm ns, ON=User s, DC=ad, DC=pl ai nj oe, DC=or g
dn: CN=Cert Publ i shers, CN=Users, DC=ad, DC=pl ai nj oe, DC=or g
Paged Set [3]

dn: CN=Domai n Admi ns, ON=User s, DC=ad, DC=pl ai nj oe, DC=or g

dn: CN=Domai n Wsers, CN=User s, DC=ad, DC=pl ai nj oe, DC=org

dn: CN=Dormai n Quest s, ON=User s, DC=ad, DC=pl ai nj oe, DC=or g

dn: CN=Group Policy Creator Owaners, CN=Users, DC=ad, DC=pl ai nj oe, DC=o0rg
Paged Set [4]

dn: CN=RAS and | AS Servers, CN=User s, DC=ad, DC=pl ai nj oe, DC=or g
dn: CN=DnsAdnmi ns, ON=User s, DC=ad, DC=pl ai nj oe, DC=or g

dn: CN=DnsWpdat eProxy, CN=User s, DC=ad, DC=pl ai nj oe, DC=or g

At some point in the future, it might be necessary to implement a new control. The constructor for a generic
Net::LDAP: :Control object can take three parameters:

t ype

A character string representing the control's OID.
critical

A Boolean value that indicates whether the operation should fail if the server does not support the control. If
this parameter is not specified, it is assumed to be FALSE, and the server is free to process the request in
spite of the unimplemented control.

val ue

Optional information required by the control. The format of this parameter value is unique to each control
and is defined by the control's designer. It is possible that no extra information is needed by the control.

The most common use of a raw Net::LDAP::Control object is to delete a referral object within the directory. By
default, the directory server denies an attempt to delete or modify a referral object and sends the client the URL of
the LDAP reference. The actual control needed to update or remove a referral entry is vendor-dependent.

OpenLDAP servers support the Manage DSA IT control described in RFC 3088. This control informs the server that
the client intends to manipulate the referrals as though they were normal entries. There is no requirement that it
be a critical or noncritical action. That behavior is left to the client using the control.

Creating a Net::LDAP::Control object representing ManageDSAIT simply involves specifying the OID. We'll specify
that the server support the control; no optional information is required:

$manage_dsa = Net:: LDAP: : Control - >(
type => "2.16.840.1. 113730. 3. 4. 2",
critical =>1);

Net::LDAP: :Constant defines a number of names that you can use as shorthand for long and unmemorable OIDs;
be sure to check this module before writing code such as the lines above. These lines can be rewritten as:

$nanage_dsa = Net:: LDAP:: Control ->(
type => LDAP_CONTROL_NMANAGEDSAI T,
critical =>1);

This control can now be included in a modify operation:

$nsg = $l dap- >nodi f y(
"ou=departnment, dc=pl ai nj oe, dc=org",
repl ace =>
{ ref => "ldap://1dap2. pl ai nj oe. or g/ ou=dept , dc=pl ai nj oe, dc=org" 1},
control => $manage_dsa);

It's difficult to discuss LDAP controls in detail because they are often tied to a specific server. A good place to look
for new controls and possible uses is the server vendor's documentation. It is also a good idea to monitor the
IETF's LDAP working groups to keep abreast of any controls that are on the track to standardization.

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

Part Ill: Appendixes

Appendix A
Appendix B
Appendix C
Appendix D

Appendix E

[Team LB] [<ereviovs)

[Team LiB]

Appendix A. PAM and NSS

Section A.1. Pluggable Authentication Modules

Section A.2. Name Service Switch (NSS)
[Team LiB]

[Team LB] [<ereviovs)

A.1 Pluggable Authentication Modules

The concept of Pluggable Authentication Modules (PAM) was first designed by Sun Microsystems' SunSoft
development group and is defined in the Open Software Foundations RFC 86.0. PAM provides a framework that
allows vendors and administrators to customize the services used to authenticate users on a local computer
system. For example, logging onto the console of a system may require stronger authentication than logging into a
host across the network via ssh. Configuring systems to use different PAM modules (e.g., smart cards or
passwords) for different services (e.g., login or ssh) allows administrators to implement as much or as little
security as the systems require.

In practice, administrators are exposed to this framework through shared libraries that implement various security,
accounting, or account management policies. On Linux and Solaris systems, you can list the installed PAM modules
by examining the contents of /lib/security. The most commonly used module for normal lookups in the system list
of accounts (including /etc/shadow) is the pam_unix.so library. Linux's PAM implementation includes a drop-in
replacement module named pam_pwdb.so, which relies on the generic interface to the Password Database library
(http://www.kernel.org/pub/linux/libs/pam/modules.html).

PAM is a framework for authentication and authorization. Authentication is the process of proving you are who you
say you are, while authorization is the process of determining what you are allowed do, given that you have
established your identity. Applications can query the PAM interface to ask questions about a user or to inform a
PAM module of a particular event. For example, "Does this password match with this login name?", "Is this user
allowed to log onto this host at 10 p.m. on a Saturday?", "The user named smitty logged onto the local system on
Thu Dec 19 21:04:27 CST 2002," or "Change this user's password to secret.” In each case, the application uses a
specific module to process each type of questions or event that can occur during the logon process.

A.1.1 Configuring PAM

PAM configuration files follow one of two formats. In modern Linux distributions, each application or service that
possesses an individual configuration file is located in the directory /etc/pam.d/. Each file is usually named after
the type of service it controls. For example, Qualcomm's Qpopper server, a POP3 daemon, uses the PAM file
/etc/pam.d/pop3, and the login service is configured by the file /etc/pam.d/login. Here's a valid configuration for a
PAM-enabledlogin service:

/etc/ pam d/l ogin
Log in using entries from/etc/[password|shadow].

aut h required /1ib/security/pamunix.so

Al low root logons only froma tty listed in /etc/securetty.
aut h required /1ib/security/pamsecuretty. so

Don't allow |l ogins (except root) if /etc/nologin exists.
aut h required /1ib/security/pamnol ogi n. so

Ensure that account and password are active and have not expired.
account required /1ib/security/pamunix.so

Log usernanme via sysl og.
sessi on required /1ib/security/pamunix. so

Enforce good passwords.

passwor d requi red /1ib/security/pamcracklib.so
Change t he password in /etc/[password| shadow .
passwor d required /1ib/security/pamunix.so

The older type of PAM configuration file, still supported on Solaris, places information for all services in one file,
/etc/pam.conf. In the absence of the /etc/pam.d/ directory, the Linux-PAM implementation will fall back to using
pam.conf. This file is similar to the newer PAM configuration file, except that the first entry on each line is the
name of the service being configured. In newer configuration files (such as the login file listed above), the name of
the service is taken from the filename. Given these rules, you could rewrite the login configuration file into an old-
stylepam.conf file like this:

http://www.kernel.org/pub/linux/libs/pam/modules.html

[etc/ pam conf
Previous entries and conments (for other services) del eted

| ogin aut h required /1ib/security/pamunix.so

| ogin aut h required /lib/security/pamsecuretty.so
I ogi n aut h requi red /'1i bl security/pamnol ogi n. so

| ogin account requi red /1ib/security/pamunix.so

| ogin sessi on required /1ib/security/pamunix.so

| ogin passwor d required /1ibl/security/pamcracklib.so
| ogin passwor d requi red /1ib/security/pamunix.so

The general syntax of a PAM configuration file in /etc/pam.d/ is:
nodul e-t ype control -flag nmodul e- path argument s

APAM module may implement any of the four defined modul e-t ypes:

aut h
These modules perform authentication, including the familiar password lookups from /etc/passwd and
/etc/shadow.

account
These modules perform certain account management functions that aren't related to authentication. For
example, an account module might restrict users other than root or members of the wheel group from
changing their user IDs (i.e., using /bin/su). These modules often deal with authorization, but they can
perform tasks that aren't related; for example, an account module might warn a user that his password is
about to expire, and should be changed.

sessi on

These modules provide session management functions before or after a user can access a particular service.
For example, a session module might check for new mail or mount the user's home directory.
passwor d

These modules update authentication tokens for the user. There is normally one password module for each
auth module defined for a service when the authentication process requires some type of credentials from
the user.

Each module type can accept one of four cont r ol - f | ags that determine how the module interacts with other
modules. These flags are:

required

Indicates that this module must succeed for the authentication (or authorization) to succeed. Control is not
returned to the requesting application until all of the modules have been called.
suf fi ci ent

Indicates that success of this module is sufficient for authentication to succeed, assuming that no previously
listed required modules have failed. In this case, no other modules in the service configuration file are
executed, and control returns to the calling application. If a sufficient module fails, the authentication
process continues; failure of a sufficient module doesn't deny access in and of itself.

opti onal

Indicates that the module's success or failure does not have any effect on the success or failure status
returned to the client application. There is one exception to this rule: if no other modules return any definite
success or failure status codes, the success or failure of an optional module determines whether
authentication succeeds.

requisite

Indicates that the module must succeed for authentication to occur. In the event of failure, control is
immediately passed back to the calling application. This is different from the r equi red control flag, which

causes all modules to be invoked before returning. This flag is not included in the original OSF-RFC 86.0.

Thenodul e- pat h component of a PAM configuration is the absolute path to the shared library that implements
the authentication or authorization functions.

The last option listed in a PAM configuration line supplies any additional arguments that should be passed to the
module upon invocation. The module must parse and process these arguments. The nature of these arguments
varies from module to module; however, a few standard arguments are normally supported by all PAM modules:

debug

Enables generation of debugging information either to standard output or via the syslogd daemon.
no_warn

Disables authentication failure logging.
use_first_pass

Instructs the module to use the password entered for the previous module and to return failure if the
password does not succeed.
try_first_pass

Instructs the module to attempt to use the password entered for the previous module. If authentication fails,
the user should be prompted to enter the password for this module.

PAM administrators frequently specify stacked configurations of modules, forcing a user to be approved by multiple
services. With your new understanding of module types and control flags, the previously listed /etc/pam.d/login file
should make more sense. Here are the auth lines from it:

aut h required /1ib/security/pamuniXx.so
aut h requi red /1iblsecurity/pamsecuretty.so
aut h requi red /1ib/security/pamnol ogi n. so

Any authentication attempt must be approved by all three in order for authentication to succeed. The first PAM
module performs standard user and password authentication according to entries in /etc/passwd. The second
module, pam_securetty.so, causes a root login to fail unless it is on a terminal listed in /etc/securetty. The final
PAM module, pam_nologin.so, results in all logins except root failing if the file /etc/nologin exists.

These modules are processed in order. You should examine for yourself what will occur in the following scenario.
Assuming that the file /etc/nologin exists, what users will be able to log onto the system? The answer is that only
theroot account will be able to log on but only from a secure console. How would this be different if the control
flag in the first line was changed from r equi red to suf fi ci ent? (The root would be able to log in from
anywhere, and the /etc/nologin file would have no affect.)

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

A.2 Name Service Switch (NSS)

TheName Service Switch (NSS) framework was designed to let administrators specify which files or directory
services to query to obtain information. For example, it's frequently used to specify whether a system should
perform hostname lookups in /etc/hosts, NIS, or DNS. Here's an entry from a typical NSS configuration file, named
/etc/nsswitch.conf. It instructs the local machine to check its own /etc/hosts file first and to consult DNS only if the
entry is not located. NIS is not consulted at all.

host s: files dns

NSS can provide similar services for many different administrative databases. The following databases are
generally defined in /etc/nsswitch.conf:

passwd
shadow
group
hosts
ethers
networks
protocols
rpc
services
netgroup
aliases
automount

You can configure a different lookup method for each database. An NSS module does not need to support all of the
databases listed above. Some lookup modules support only user accounts. The libnss_dns.so library is designed to
resolve only hostnames and network addresses.

A typical NSS configuration for an LDAP-enabled host would appear as:

/ et c/ nsswi t ch. conf
Legal entries are:

ni spl us or nis+ Use NIS+ (NI S Version 3)
nis or yp: We NIS (NI'S Version 2)

dns: Use DNS (Domain Nane Service)

files: Use the local files

db: Use the | ocal database (.db) files
conpat: Use NI'S on conpat node

hesiod: Use Hesi od for user | ookups

| dap: Use PADL's nss_| dap

HOoHHF R HHHHHHH

How t o handl e users and groups

passwd: files | dap
shadow files | dap
group: files | dap

DNS shoul d be authoritative; use files only when DNS is not avail abl e.
host s: dns [NOTFOUND=r eturn] files

boot parans: I dap files

ethers: I dap files
net masks: I dap files
net works: I dap files
protocols: Idap files
rpc: Idap files

servi ces: I dap files

net gr oup: files Idap
automount: files |dap
ali ases: files

More information can be found on the nsswitch.conf(5) manpage.

[TeamLiB] [Crreviovs]

[Team LB] [<ereviovs)

Appendix B. OpenLDAP Command-Line Tools

Section B.1. Debugging Options

Section B.2. Slap Tools

Section B.3. LDAP Tools
[Team LB | [rrevious [e]

[Team LB] [<ereviovs)

B.1 Debugging Options

Most OpenLDAP tools provide an option for setting the log level during execution. Table B-1 lists the information
recorded with each level. Log levels are additive, so a log level of 24 means to print packets sent and received as
well as logging all connection management functions.

Table B-1. OpenLDAP logging levels

Level Information recorded

-1 All logging information

No logging information

Trace function calls

Heavy trace debugging

0]
1
2 Packet-handling debugging information
4
8

Connection management

16 Packets sent and received

32 Search filter processing

64 Configuration file processing

128 |Access control list processing

256 |Statistics for connection, operations, and results

512 |Statistics for results returned to clients

1024 |Communication with shell backends

2048 |Entry-parsing debugging information

[TeamLiB] [Crreviovs]

[Team LB] [<ereviovs)

B.2 Slap Tools

The collection of slap tools included with OpenLDAP are provided to import and export data directly from the DB
files used for supporting an OpenLDAP server.

B.2.1 slapadd(8c)

This tool reads LDIF entries from a file or standard input and writes the new records to a slapd database (see Table
B-2).

Table B-2. Summary of slapadd command-line arguments

Option Description

-C Continues processing input in the event of errors.

Specify which database in the configuration file to use by the directory’s suffix (-b) or by its location

- ffix- .)
i:tesuerlx n (-n) in the slapd.conf file (the first database listed is numbered 0). These options are mutually
9 exclusive.
d integer Specifies which debugging information to log. See the | ogl evel parameter in slapd.conf for a listing

of log levels.

-f filename |Specifies which configuration file to read.

Specifies the LDIF file to use for input. In the absence of this option, slapadd reads data from

-l filename .
standard input.

-v Enables verbose mode.

B.2.2 slapcat(8c)

This tool reads records from a slapd database and writes them to a file or standard output (see Table B-3).

Table B-3. Summary of slapcat command-line arguments

Option Description

-C Continues processing input in the event of errors.

Specify which database in the configuration file to use by the directory's suffix (-b) or by its location

._b suffx-n (-n) in the slapd.conf file (the first database listed is numbered 0). These options are mutually
integer .

exclusive.
d integer Specifies which debugging information to log. See the | ogl evel parameter in slapd.conf for a listing

of log levels.

-f filename |Specifies which configuration file to read.

Specifies the name of the file to which the LDIF entries should be written. In the absence of this

-l filename . .
option,slapcat writes data to standard output.

-V Enables verbose mode.

B.2.3 slapindex(8c)

This tool regenerates the indexes in a slapd database (see Table B-4).

Table B-4. Summary of slapindex command-line arguments

Option Description

-C Continues processing input in the event of errors.

b suffix-n Specify which database in the configuration file to use by the directory's suffix (-b) or by its location

integer (-n) in_ the slapd.conf file (the first database listed is numbered 0). These options are mutually
exclusive.

-d integer Specifies which debugging information to log. See the | ogl evel parameter in slapd.conf for a listing
of log levels.

-f filename |Specifies which configuration file to read.

-V Enables verbose mode.

B.2.4 slappasswd(8c)

This tool generates a password hash suitable for use as an Lq in slapd.conf (see Table B-5).

Table B-5. Summary of slappasswd command-line arguments

Option Description
t Defines the format of the salt used when invoking the crypt () function to generate a password
¢ crypt- suitable for use with { CRYPT} . The string must be in the snprintf() format and must contain a
salt-format | _. .
single¥%s conversion.
h hash Defines the hash algorithm to use. Possible values are { CRYPT} ,{ MD5} ,{ SMD5} ,{ SSHA}, and
-hhas { SHA} . The default is { SSHA} .
-s secret Specifies the password to hash.
J Instructsslappasswd to generate password syntaxes for the user Passwor d attribute (the default)
and is included for forward compatibility. No other syntaxes are currently supported.
Y Enables verbose mode.

[Team LiB]

[Team LiB]

B.3 LDAP Tools

OpenLDAP's set of LDAP client tools can be used to communicate with any LDAPv3 server (see Table B-6).

Table B-6. Command-line options common to ldapsearch, ldapcompare, ldapadd, Idapdelete,

ldapmodify, and Idapmodrdn

Option Description
d integer S.p(_acifies what debugging information to log. See the | ogl evel slapd.conf parameter for a
listing of log levels.
-D binddn Specifies the DN to use for binding to the LDAP server.

-e
[V]ctrl[=ctrlparam]

Defines an LDAP control to be used on the current operation. See also the -M option for the
manageD SAit control.

security_properties

-f filename Specifies the file containing the LDIF entries to be used in the operations.

-H URI Defines the LDAP URI to be used in the connection request.

A Enables the SASL "interactive" mode. By default, the client prompts for information only
when necessary.

-k Enables Kerberos 4 authentication.

-K Enables only the first step of the Kerberos 4 bind for authentication.
Enable the Manager DSA IT control. This option is necessary when modifying an entry that is

-M-MM a referral or an alias. -MM requires that the Manager DSA IT control be supported by the
server.

-n Does not perform the search; just displays what would be done.

-0 Defines the SASL security properties for authentication. See previous information on the

sasl - secprops parameter in slapd.conf.

-P [2]3]

Defines which protocol version to use in the connection (Version 2 or 3). The default is LDAP
v3.

-Q

Suppresses SASL-related messages such as how the authentication mechanism is used,
username, and realm.

-R sasl_realm

Defines the realm to be used by the SASL authentication mechanism.

-U username

Defines the username to be used by the SASL authentication mechanism.

-V

Enables verbose mode.

-w password

Specifies the password to be used for authentication.

-W Instructs the client to prompt for the password.
-X Enables simple authentication. The default is to use SASL authentication.
< id Defines the SASL authorization identity. The identity has the form dn:dn oru:user . The

default is to use the same authorization identity that the user authenticated.

-y passwdfile

Instructs the Idap tool to read the password for a simple bind from the given filename.

-Y sasl_mechanism

Tells the client which SASL mechanism should be used. The bind request will fail if the server
does not support the chosen mechanism.

-Z-2Z

Issue a StartTLS request. Use of -ZZ makes the support of this request mandatory for a
successful connection.

B.3.1 ldapadd(1), Idapmodify(1)

These tools send updates to directory servers (see Table B-7).

Table B-7. Idapadd/Ildapmodify options

Option Description

-a Adds entries. This option is the default for [dapadd.

-r Replaces (or modifies) entries and values. This is the default for Idapmodify.
-F Forces all change records to be used from the input.

B.3.2 Idapcompare(1)

This tool asks a directory server to compare two values:

| dapconpare [options] DN <attr:value|attr:: b64val ue>.

There are no additional command-line flags for this tool.

B.3.3 Idapdelete(1)

This tool deletes entries from an LDAP directory (see Table B-8).

Table B-8. Idapdelete [option] DN

Option Description
-r Deletes the subtree whose root is designated by DN. The delete is not performed atomically.

B.3.4 Idapmodrdn(1)

This tool changes the RDN of an entry in an LDAP directory (see Table B-9).

Table B-9. Idapmodrdn [options] [dn rdn]

Option Description

Instructsldapmodrdn to continue if errors occur. By default, it terminates if there is an error.

Removes the old RDN value. The default behavior is to add another value of the RDN and
leave the old value intact. The default behavior makes it easier to modify a directory without
leaving orphaned entries.

Defines the new superior, or parent, entry under which the renamed entry should be

-s
new_superior_node |located.

B.3.5 Idappasswd(l)

This tool changes the password stored in a directory entry (see Table B-10).

Table B-10. Idappasswd [options] [user]

Option

Description

-a secret

The old password value

-A

Prompt for the old password

-S new_secret

The new password value

-S

Prompt for the new password

B.3.6 Idapsearch(1)

This tool issues LDAP search queries to directory servers (see Table B-11).

Table B-11. Idapsearch [options] [filter [attributes...]]

Option

Description

-a

[never|always|search|find]

Specifies how to handle aliases when they are located during a search. Possible
values include never (default), al ways,sear ch, or find.

-A For any entries found, returns the attribute names, but not their values.
-b basedn Defines the base DN for the directory search.
_F prefix Defines the URL prefix for filenames. The default is to use the value stored in
pre $LDAP_FI LE_URI _PREFI X.
-l limit Defines a time limit (in seconds) for the server in the search.
Print the resulting output in LDIF v1 format. -LL causes the result to be printed in
-L-LL-LLL LDIF format without comments. -LLL prints the resulting output in LDIF format

without comments and without version information.

-s [sub]base|one]

Defines the scope of the search to be base,one, or sub (the default).

-S attribute Causes the Idapsearch client to sort the results by the value of attribute.
Write binary values to files in a temporary directory defined by the -T option. -tt

-t-tt specifies that all values should be written to files in a temporary directory defined by
the-T option.

T director Defines the directory used to store the resulting output files. The default is the

y directory specified by $SLDAP_TMPD R.
-u Includes user-friendly entry names in the output.
-z limit Specifies the maximum number of entries to return.

[Team LiB]

[Team LB] [<ereviovs)

Appendix C. Common Attributes and Objects

This appendix is provided as a quick reference for schema items used throughout this book. It is by no means a
complete set of attributes and object classes that you may encounter in the wild. The schema items not listed here
should not be assumed to be less important or less commonly used. These are just the primary ones | have
focused on in the examples.

[Team LB] [<ereviovs)

[Team LiB]

C.1 SchemaFiles

Table C-1 tells you where you can find schema files.

Table C-1. Where to find schema files

Software

Schema files included

Bind 9 (schema file located at http://www.venaas.no/ldap/bind-sdb/)

dnszone.schema

LDAP System Administration (http://www.oreilly.com/catalog/ldapsa/)

idpool.schema

printer.schema

OpenLDAP (http://www.openldap.org/)

core.schema
corba.schema
cosine.schema
inetorgperson.schema
java.schema
misc.schema
nis.schema

openldap.schema

Samba (http://www.samba.org/)

samba.schema

Sendmail (http://www.sendmail.org/)

sendmail.schema

FreeRadius (http://www.freeradius.orq)

RADIUS-LDAPv3.schema

[Team LiB]

http://www.venaas.no/ldap/bind-sdb/
http://www.oreilly.com/catalog/ldapsa/
http://www.openldap.org/
http://www.samba.org/
http://www.sendmail.org/
http://www.freeradius.org

[Team LiB]

C.2 Attributes

Table C-2 outlines some common attributes presented in this book.

Table C-2. Common attributes presented in this book

Name Single value Description
cn Common name of entity
de Single domain component of an FQDN
di spl ayName v Preferred name to use when displaying entry
gi dNunber v Numeric Unix group 1D
gi venNane First name by which an entity is known
mai | Email address represented as an RFC 822 mailbox
ou organi zational Unit to which this entry belongs
sn Last name by which an entity is known
t el ephoneNunber Telephone number (supports international dialing format)
uid Login name for a user account
ui dNunber v Numeric Unix user 1D
user Passwor d Password asssociated with an entry

[Team LiB]

[Team LiB]

C.3 Object Classes

This section describes some object classes presented in this book.

account (cosine.schema)

Type

STRUCTURAL

Parent

top

Attributes

Mandatory:ui d

Optional:descri pti on,seeAl so,l ocal i t yNanme,organi zat i onName,or gani zat i onal Uni t Nane,host

dcObject (core.schema)

Type

AUXI LI ARY

Parent

top

Attributes

Mandatory:dc

Optional: None

dNSZone (dnszone.schema)

Type

STRUCTURAL

Parent

t op

Attributes

Mandatory:zoneNane,r el at i veDonmai nNane

Optional:DNSTTL,DNSCl ass,ARecord,MDRecor d,MXRecor d,NSRecor d,SQCARecor d,CNAMVERecord,
PTRRecor d,Hl NFORecord,M NFORecord,TXTRecor d,SI GRecor d,KEYRecor d,AAAARecor d,LOCRecor d,
NXTRecor d,SRVRecor d,NAPTRRecor d,KXRecor d,CERTRecor d,A6Recor d,DNAMERecord

gidPool (idpool.schema)

Type

AUXI LI ARY

Parent

top

Attributes

Mandatory:gi dNunber ,cn

Optional: None

inetLocalMailReciptient (misc.schema)

Type

AUXI LI ARY

Parent

t op

Attributes

Mandatory: None

Optional:mai | Local Addr ess,mai | Host ,mai | Rout i ngAddr ess

inetOrgPerson (inetorgperson.schema)

Type

STRUCTURAL

Parent

organi zat i onal Person

Attributes

Mandatory: None

Optional:audi o0,busi nessCat egor y,car Li cense,depar t ment Nunber ,di spl ayNane,enpl oyeeNunber,
enpl oyeeType,gi venNane,honePhone,honePost al Address,initi al s,j pegPhot o,l abel edURI ,imai |,
manager ,nmobi | e,0,pager ,phot o,r com\unber ,secr etary,uid,userCertificate,

x500uni quel denti fi er ,pref erredLanguage,user SM MECer tifi cat e,user PKCS12

nisMap (nis.schema)

Type

STRUCTURAL

Parent

top

Attributes

Mandatory:ni s MapNane

Optional:descri pti on

nisNetgroup (nis.schema)

Type

STRUCTURAL

Parent

t op

Attributes

Mandatory:cn

Optional:ni sNet gr oupTri pl e,menber Ni sNet group,description

nisObject (nis.schema)

Type

STRUCTURAL

Parent

top

Attributes

Mandatory:cn,ni sMapEnt ry,ni sMapName

Optional:descri pti on

nprintHostPrinter (printer.schema)

Type

AUXI LI ARY

Parent

top

Attributes

Mandatory: None

Optional:pri nt er - nanme,npri ntPri nt er Name,npri ntLocati on

nprintNetworkPrinterInfo (printer.schema)

Type

AUXI LI ARY

Parent

top

Attributes

Mandatory: None

Optional:npri nt DNSName,npr i nt Har dwar eQueueNane,npri nt Queue Por t

nprintPortPrinterinfo (printer.schema)

Type

AUXI LI ARY

Parent

top

Attributes

Mandatory: None

Optional:npri nt Devi ceNanme,npri nt Devi ceFl ags,nprintFil ter

organizationalPerson (core.schema)

Type

STRUCTURAL

Parent

per son

Attributes

Mandatory: None

Optional:titl e,x121Addr ess,regi ster edAddress,desti nati onl ndi cat or ,pref erredDel i ver yMet hod,
t el exNunber ,t el etexTerm nal [dentifi er,tel ephoneNunber ,i nt er nati onal i SDNNunber ,

facsi m | eTel ephoneNunber ,street,post Offi ceBox,post al Code,post al Address,

physi cal Del i veryO fi ceNane,ou,st |

organizationalUnit (core.schema)

Type

STRUCTURAL

Parent

top

Attributes

Mandatory:ou

Optional:user Passwor d,sear chGui de,seeAl so,busi nessCat egor y,x121Addr ess,r egi ster edAddress
desti nati onl ndi cat or ,pref erredDel i ver yMet hod,t el exNunber ,t el et exTermi nal I dentifier,

t el ephoneNunber ,i nt er nat i onal i SDNNunber ,f acsi ni | eTel ephoneNunber ,street ,post Of f i ceBox,
post al Code,post al Address,physi cal Del i veryh fi ceNane,st,| ,description

person (core.schema)

Type

STRUCTURAL

Parent

t op

Attributes

Mandatory:sn,cn

Optional:user Passwor d,t el ephoneNunber ,seeAl so,description

posixAccount (nis.schema)

Type

AUXI LI ARY

Parent

t op

Attributes

Mandatory:cn,ui d,ui dNunber ,gi dNunber ,honmeDir ectory

Optional:user Passwor d,l ogi nShel | ,gecos,descripti on

posixGroup (nis.schema)

Type

STRUCTURAL

Parent

t op

Attributes

Mandatory:cn,gi dNunber

Optional:user Passwor d,menber Ui d,descri pti on

printerAbstract (printer.schema)

Type

ABSTRACT

Parent

t op

Attributes

Mandatory: None

Optional:pri nt er - name,pri nt er - nat ur al - | anguage-confi gured,pri nter-| ocation,printer-info,
pri nter-nore-info,printer-make-and-nodel ,printer-multiple-docunment-jobs-supported,
printer-charset-configured,printer-charset-supported,printer-generated-natural-|anguage-
support ed,pri nt er-docunent -f or mat - support ed,pri nter-col or-supported,printer-conpression-
support ed,pri nt er - pages-per-m nut e,pri nt er - pages-per-m nut e-col or,pri nter-finishings-
support ed,pri nt er - nunber - up- supported,pri nt er - si des-supported,pri nt er-nedi a-supported,
pri nter-nmedi a-1 ocal - supported,printer-resol ution-supported,printer-print-quality-
supported,printer-job-priority-supported,printer-copies-supported,printer-job-k-octets-
supported,pri nter-current-operator,printer-service-person,printer-delivery-orientation-
support ed,pri nt er-stacking-order-supported,pri nter-out put-features-supported

printerlPP (printer.schema)

Type

AUXI LI ARY

Parent

t op

Attributes

Mandatory: None

Optional:pri nt er -i pp- ver si ons-supported,pri nter-mnul tipl e-docunent-j obs-supported

printerLPR

(printer.schema)

Type

AUXI LI ARY

Parent

top

Attributes

Mandatory:pri nt er - nanme

Optional:pri nter-ali ases

printerService

(printer.schema)

Type

STRUCTURAL

Parent

pri nt er Abstract

Attributes

Mandatory: None

Optional:pri nter-uri ,printer-xri-supported

printerServiceAuxClass

(printer.schema)

Type

AUXI LI ARY

Parent

pri nt er Abstract

Attributes

Mandatory: None

Optional:pri nter-uri ,printer-xri-supported

radiusprofile (RADIUS-LDAPv3.schema)

Type

STRUCTURAL

Parent

t op

Attributes

Mandatory:cn

Optional:r adi usAr apFeat ur es,r adi usAr apSecuri ty,r adi usAr apZoneAccess,r adi usAut hType,

r adi
r adi
r adi
r adi
r adi
r adi
r adi
r adi
r adi
r adi
r adi
r adi
r adi
r adi
r adi

usCal | backl d,r adi usCal | backNunber ,r adi usCal | edStationl d,r adi usCal I'i ngSt ati onld,

usCl ass,radi usCl i ent | PAddr ess,radi usFi | terl d,radi usFranedAppl eTal kLi nk,

usFr amedAppl eTal kNet wor k,r adi usFr anedAppl eTal kZone,r adi usFr anedConpressi on,

usFr amedl PAddr ess,r adi usFr amedConpressi on,r adi usFr amedl PAddr ess,r adi usFr amed| PNet mask,
usFr amedl PXNet wor k,r adi usFr anedMTU,r adi usFr anedPr ot ocol ,r adi usCheckl t em

usRepl yl t emr adi usFr amedRout e,r adi usFr amedRout i ng,r adi usl dl eTi meout ,r adi usG oupNane,
usHi nt,radi usHunt gr oupName,r adi usLogi nl PHost ,r adi usLogi nLATGr oup,r adi usLogi nLATNode,
usLogi nLATPort ,r adi usLogi nLATServi ce,r adi usLogi nServi ce,r adi usLogi nTCPPort ,

usLogi nTi me,r adi usPasswor dRetry,radi usPortLi mt,radi usPronpt,radi usProxyToReal m

usReal mr adi usRepli cateToReal mr adi usSer vi ceType,r adi usSessi onTi neout ,

usStripUser Nane,r adi usTer m nati onAction,radi usTunnel Assi gnment | d,

usTunnel Cli ent Endpoi nt ,r adi usl dl eTi meout ,r adi usPr ofi | eDn,r adi usSi mul t aneousUse,
usTunnel Medi uniType,r adi usTunnel Passwor d,r adi usTunnel Pref er ence,

usTunnel Pri vat eG oupld,radi usTunnel Ser ver Endpoi nt ,r adi usTunnel Type,r adi usUser Cat egory,
usVSAradi usExpiration,di al upAccess

referral (built-in)

Type

STRUCTURAL

Parent

top

Attributes

Mandatory:r ef

Optional: None

sambaAccount (samba.schema)

Type

AUXI LI ARY

Parent

top

Attributes
Mandatory:ui d,rid
Optional:cn,| mPasswor d,nt Passwor d,pwdLast Set,| ogonTi me,l ogof f Ti me,ki ckoff Ti me,pwdCanChange,

pwdMust Change,acct Fl ags,di spl ayNanme,snbHone,honmeDri ve,scri pt Pat h,profil ePath,description,
user Wor kstat i ons,pri maryGr oupl Ddonmai n

sendmailMTA (sendmail.schema)

Type

STRUCTURAL

Parent

t op

Attributes

Mandatory: None

Optional:sendmai | MTAC! ust er ,sendmai | MTAHost ,Descri pti on

sendmailMTAAlias (sendmail.schema)

Type

STRUCTURAL

Parent

sendmai | MTA

Attributes

Mandatory: None

Optional:sendmai | MTAAl i as@ oupi ng,sendmai | MTACI ust er ,sendmai | MTAHost ,Descri pti on

sendmailMTAAliasObject (sendmail.schema)

Type

STRUCTURAL

Parent

sendnmai | MTAAI i as

Attributes

Mandatory:sendmai | MTAKey,sendmai | MTAAI i asVal ue

Optional:sendmai | MTAAl i as& oupi ng,sendnmai | MTACI ust er ,sendmai | MTAHost ,Descri pti on

sendmailMTACIlass (sendmail.schema)

Type

STRUCTURAL

Parent

sendmai | MTA

Attributes

Mandatory:sendmai | MTACI assNane,sendnmai | MTACI assVal ue

Optional:sendmai | MTAC! ust er ,sendmai | MTAHost ,Descri pti on

sendmailMTAMap (sendmail.schema)

Type

STRUCTURAL

Parent

sendmai | MTA

Attributes

Mandatory:sendmai | MTAMapNane

Optional:sendmai | MTAC! ust er ,sendmai | MTAHost ,Descri pti on

sendmailMTAMapODbject (sendmail.schema)

Type

STRUCTURAL

Parent

sendmai | MTAMap

Attributes

Mandatory:sendmai | MTAMapNane,sendmai | MTAKey,sendrai | MTAMapVal ue

Optional:sendmai | MTACI ust er ,sendmai | MTAHost ,Descripti on

shadowAccount (nis.schema)

Type

AUXI LI ARY

Parent

top

Attributes

Mandatory:ui d

Optional:user Passwor d,shadowLast Change,shadowM n,shadowVax,shadowar ni ng,shadow nacti ve,
shadowExpi r e,shadowF| ag,description

uidPool (idpool.schema)

Type

AUXI LI ARY

Parent

t op

Attributes

Mandatory:ui dNunber ,cn

Optional: None

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

Appendix D. LDAP RFCs, Internet-Drafts, and Mailing Lists

Section D.1. Requests for Comments

Section D.2. Mailing Lists

[Team LiB | [<ereviovs)

[Team LB] [<ereviovs)

D.1 Requests for Comments

RFC documents are available online at http://www.rfc-editor.org/. The list here includes LDAPv3-related RFCs in
numerical order.

RFC 1274

"TheCOSINE and Internet X.500 Schema". P. Barker and S. Kille. November 1991. Status: Proposed
Standard.
RFC 2079

"Definition of an X.500 Attribute Type and an Object Class to Hold Uniform Resource Identifiers (URIs)". M.
Smith. January 1997. Status: Proposed Standard.
RFC 2247

"UsingDomains in LDAP/X.500 Distinguished Names". S. Kille et al. January 1998. Status: Proposed
Standard.
RFC 2251

"Lightweight Directory Access Protocol (v3)". M. Wahl, T. Howes, and S. Kille. December 1997. Status:
Proposed Standard.
RFC 2252

"Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions". M. Wahl et al. December 1997.
Status: Proposed Standard.
RFC 2253

"Lightweight Directory Access Protocol (v3): UTF-8 String Representation of Distinguished Names". M. Wabhl,
S. Kille, and T. Howes. December 1997. Status: Proposed Standard.
RFC 2254

"TheString Representation of LDAP Search Filters". T. Howes. December 1997. Status: Proposed Standard.
RFC 2255

"TheLDAP URL Format". T. Howes and M. Smith. December 1997. Status: Proposed Standard.
RFC 2256

"A Summary of the X.500(96) User Schema for use with LDAPv3". M. Wahl. December 1997. Status:
Proposed Standard.
RFC 2293

"Representing Tables and Subtrees in the X.500 Directory". S. Kille. March 1998. Status: Proposed
Standard.
RFC 2294

"Representing the O/R Address Hierarchy in the X.500 Directory Information Tree". S. Kille. March 1998.
Status: Proposed Standard.
RFC 2307

"AnApproach for Using LDAP as a Network Information Service". L. Howard. March 1998. Status:
Experimental.
RFC 2377

"Naming Plan for Internet Directory-Enabled Applications™. A. Grimstad et al. September 1998. Status:
Informational.
RFC 2589

"Lightweight Directory Access Protocol (v3): Extensions for Dynamic Directory Services". Y. Yaacovi, M.
Wahl, and T. Genovese. May 1999. Status: Proposed Standard.
RFC 2596

http://www.rfc-editor.org/

"Use of Language Codes in LDAP". M. Wahl and T. Howes. May 1999. Status: Proposed Standard.
RFC 2649

"An LDAP Control and Schema for Holding Operation Signatures". B. Greenblatt and P. Richard. August
1999. Status: Experimental.
RFC 2696

"LDAP Control Extension for Simple Paged Results Manipulation”. C. Weider et al. September 1999. Status:
Informational.
RFC 2713

"Schema for Representing Java™ Objects in an LDAP Directory”. V. Ryan, S. Seligman, and R. Lee. October
1999. Status: Informational.
RFC 2714

"Schema for Representing CORBA Object References in an LDAP Directory"”. V. Ryan, R. Lee, and S.
Seligman. October 1999. Status: Informational.
RFC 2798

"Definition of the inetOrgPerson LDAP Object Class". M. Smith. April 2000. Status: Informational.
RFC 2829

"Authentication Methods for LDAP". M. Wahl et al. May 2000. Status: Proposed Standard.
RFC 2830

"Lightweight Directory Access Protocol (v3): Extension for Transport Layer Security". J. Hodges, R. Morgan,
and M. Wahl. May 2000. Status: Proposed Standard.
RFC 2849

"TheLDAP Data Interchange Format (LDIF)—Technical Specification”. G. Good. June 2000. Status: Proposed
Standard.
RFC 2891

"LDAP Control Extension for Server Side Sorting of Search Results". T. Howes, M. Wahl, and A. Anantha.
August 2000. Status: Proposed Standard.
RFC 3045

"Storing Vendor Information in the LDAP root DSE". M. Meredith. January 2001. Status: Informational.
RFC 3062

"LDAP Password Modify Extended Operation”. K. Zeilenga. February 2001. Status: Proposed Standard.
RFC 3088

"OpenLDAP Root Service: An experimental LDAP referral service". K. Zeilenga. April 2001. Status:
Experimental.
RFC 3112

"LDAP Authentication Password Schema". K. Zeilenga. May 2001. Status: Experimental.
RFC 3296

"Named Subordinate References in Lightweight Directory Access Protocol (LDAP) Directories". K. Zeilenga.
July 2002. Status: Proposed Standard.
RFC 3377

"Lightweight Directory Access Protocol (v3): Technical Specification". J. Hodges and R. Morgan. September
2002. Status: Proposed Standard.
RFC 3383

"Internet Assigned Numbers Authority (IANA) Considerations for the Lightweight Directory Access Protocol
(LDAP)". K. Zeilenga. September 2002. Status: Best Common Practices.

Internet-Drafts (I-Ds) are temporary by nature, although this often does not stop vendors from implementing parts
or all of the functionality that a draft outlines. The I-Ds listed here are included for their relevance to topics
covered in one or more chapters in this book. The absence of an I-D from this list should not be interpreted to
mean it may or may not be relevant in future LDAP deployments.

Nonexpired I-Ds can be found at http://rfc-editor.org/. Expired drafts can be found online at various archive sites,
such as http://www.watersprings.org/. Search engines such as Google.com are normally able to locate several
such archives.

draft-lachman-laser-ldap-mail-routing-xx.txt

"LDAP Schema for Intranet Mail Routing”. H. Lachman and G. Shapiro. Expires: July 2001.
draft-ietf-ldapext-ldap-c-api-xx.txt

"The C LDAP Application Program Interface”. M. Smith (ed.) et al. Expires: May 2001.
draft-weltman-ldapv3-proxy-xx.txt

"LDAP Proxied Authorization Control”. R. Weltman. Expires: November 2002.
draft-fleming-ldap-printer-schema-xx.txt

"Lightweight Directory Access Protocol (LDAP): Schema for Printer Services". Pat Fleming and I. McDonald.
Expires: December 2002.
draft-howard-rfc2307bis-xx.txt

"An Approach for Using LDAP as a Network Information Service". L. Howard and M. Ansari. Expires: April
2003.
draft-ietf-ldapext-ldapv3-viv-xx.txt

"LDAP Extensions for Scrolling View Browsing of Search Results". D. Boreham, J. Sermersheim, and A.
Kashi. Expires: November 2002.
draft-ietf-ldapext-acl-model-xx.txt

"Access Control Model for LDAPv3". E. Stokes et al. Expires: January 2001.

[Team LB] [<ereviovs)

http://rfc-editor.org/
http://www.watersprings.org/

[Team LB] [<ereviovs)

D.2 Mailing Lists

OpenLDAP.org hosts several public mailing lists, all of which are described at http://www.openldap.org/lists/. The
two most frequented lists are openldap-software (discussions about software created as part of the OpenLDAP
project) and openldap-devel (technical discussions relating to OpenLDAP development). You can subscribe to a list
by sending an email to openldap-<list>-request@OpenLDAP.org, in which <list> is either software or devel, with
the word "subscribe" in the body of the message.

The University of Michigan hosts a general LDAP mailing list. You can subscribe to its list by sending email to Idap-
request@umich.edu with the word "subscribe" as the subject or by accessing the web interface found at
http://listserver.itd.umich.edu/.

[Team LB] [<ereviovs)

http://www.openldap.org/lists/
http://listserver.itd.umich.edu/

[Team LB] [<ereviovs)

Appendix E. slapd.conf ACLs

This appendix is provided as a quick reference to the access control rule syntax used in slapd.conf. The general
syntax of an access control rule is:

access to what {by whohow nmuch [control]}+
Three syntax items are referred to frequently in the tables found in this appendix:
dnstyle

Can be one of [regex | base | one | subtree | chil dren]
style

Can be one of [r egex | base]
regex

Will be expanded as described by the regex(7) manpage

[TeamLiB1] [Crreviovs]

[Team LB] [<ereviovs)

E.1 What?

Table E-1 presents a summary of access rule targets.

Table E-1. Summary of access rule targets

What? Description
Everything

*

dn[.dnstyl e] =r egex The entries specified by the styl e beginning at the suffix r egex
filter=ldapfilter The entries returned by applying the RFC 2254 LDAP filter to the directory
attrs=attribute_list The list of attributes specified

[Team LB] [<ereviovs)

[Team LB] [<ereviovs)

E.2 Who?

Table E-2 presents a summary of access rule entities.

Table E-2. Summary of access rule entities

Who? Description
* Everyone (including anonymous connections)
anonynous Non-authenticated connections
users Authenticated connections
sel f The user represented by the DN of the target entry
dn[dnstyl e] =r egex The user represented by the specified DN.

The user represented by the DN stored in the specified attribute in the

dnattr=attri bute_name
target entry

group[/obj[/attr]][.styl e] =pattern |The members of the group represented by pattern
peer nanme[.styl e] =pattern

socknane[.styl e] =pattern
Host-/filesystem-based access mechanisms
domai n[.styl e[,nodi fier]]=pattern

sockurl [.styl e] =pattern

ssf=n

transport _ssf=n

Defined minimum security levels for access to be granted
tls_ssf=n

sasl _ssf=n

[Team LiB] EEEENES | EE

[Team LiB]

E.3 How Much?

OpenLDAP supports two modes of defining access. The general form of the access specifier clause is:

[sel f]1{level|priv}

The special modifier sel f implies special access to self-owned attributes such as the member attribute in a group.

While the access level model implements incremental access (higher access includes lower access levels), the
privilege model requires that an administrator explicitly define access for each permission using the =,+, and -

operators to reset, add, and remove permissions, respectively (see Table E-3).

Table E-3. Summary of access and privilege levels from most (top) to least (bottom)

A . .
ceess Privilege Permission granted
level
write w Access to update attribute values (e.g., change this t el ephoneNunber to 555-2345).
r ead r Access to read search results (e.g., Show me all the entries with a t el ephoneNunber of
555%).
sear ch s Access to apply search filters (e.g., Are there any entries with at el ephoneNunber of
555%7).
conmpare |C Access to compare attributes (e.g., Is your t el ephoneNunber 555-12347).
aut h X Access to bind (authenticate). This requires that the client send a username in the form of
a DN and some type of credentials to prove his or her identity.
none No access.

Control flow from one access rule to the next can be managed by the keywords st op,cont i nue, and break (see

Table E-4).

Table E-4. Control flow keywords in access rules
Keyword Meaning
break Allows other access clauses to be processed
cont i nue Allows additional "who" clauses within the current access rule to be processed
stop Stops access check upon a match (default)

[Team LiB]

[Team LB] [<ereviovs)

E.4 Examples

Grant authenticated users the capability to read the cn attribute with the following:

access to attrs=cn
by users read

Grant a single, specified user the capability to write to all posi XxAccount entries below the ou=peopl e container
with the following. This does not include permission to add new entries directly below ou=peopl e.

access to dn.children="ou=peopl e, dc=pl ai nj oe, dc=or g"
filter=(objectclass=posi xAccount)
by dn="ui d=adnmi n, ou=peopl e, dc=pl ai njoe, dc=org" wite

Grant everyone the capability to attempt to authenticate against an entry's password with the following. The owner
of the entry should also be given read and write access.

access to attrs=user Password
by * +x conti nue
by sel f +rw

Restrict access to the administration organizational unit to members of the admin groupCf Nares object with the
following:

access to dn. subtree="ou=admnini strati on, dc=pl ai nj oe, dc=or g"
by group/ gr oupOf Nanes/ menber =
"cn=adm n, ou=gr oup, dc=pl ai nj oe, dc=org" wite
by * none

[TeamLiB] [Crreviovs]

[Team LiB] [« previous|

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal on the cover of LDAP System Administration is a mink (Mustela vison). Mink are found throughout the
United States and Canada except in Arizona, the Arctic, and some offshore islands. A mink's fur is mostly brown
with some white spots around the throat, chin, and chest. Its coat is thick, soft, and waterproof (thanks to guard
hairs covered with an oily protective substance). Its body is streamlined and skinny with short legs and an
elongated face. As part of its water-loving nature, a mink's toes are partially webbed. Body length varies but is
usually around two feet. The tail comprises almost half of a mink's total length.

Females become fertile during the winter and give birth in April or May. A typical litter ranges between one and
eight offspring. M. vison is a solitary species; males are particularly intolerant of each other. They mark their
territories with a pungent, musky secretion from their oversized anal glands. They are especially active at night
and are skilled swimmers and climbers. Mink dig burrows in banks of lakes and rivers, or they may occupy
abandoned dens of other mammals, such as muskrats. Their tastes in food changes from season to season, but
they tend to dine on small mammals such as mice, rabbits, and shrews, along with fish and duck.

The main threat to the mink's existence continues to be the fur industry. Most U.S. states and all of Canada have
limited trapping seasons with strict quotas on catch size. These provisions help keep mink population densities
constant. Mink have few natural enemies other than humans. Occasionally, they will be hunted by coyotes,
bobcats, and other meat-eaters.

Matt Hutchinson was the production editor and copyeditor for LDAP System Administration. Genevieve d'Entremont
proofread the book. Genevieve d'Entremont, Emily Quill and Mary Anne Weeks Mayo provided quality control.
Jamie Peppard provided production assistance. Julie Hawks wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress
4.1 using Adobe's ITC Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. This book was converted by Joe
Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason Mclntosh, Neil Walls, and
Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in this book
were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The
tip and warning icons were drawn by Christopher Bing. This colophon was written by Matt Hutchinson.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and

Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray,
Benn Salter, John Chodacki, and Jeff Liggett.

[Team LiB] [+ Frevious]|

	Main Page
	Table of content
	Copyright
	Preface
	How This Book Is Organized
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	Part I: LDAP Basics
	Chapter 1. 'Now where did I put that...?', or 'What is a directory?'
	1.1 The Lightweight Directory Access Protocol
	1.2 What Is LDAP?
	1.3 LDAP Models

	Chapter 2. LDAPv3 Overview
	2.1 LDIF
	2.2 What Is an Attribute?
	2.3 What Is the dc Attribute?
	2.4 Schema References
	2.5 Authentication
	2.6 Distributed Directories
	2.7 Continuing Standardization

	Chapter 3. OpenLDAP
	3.1 Obtaining the OpenLDAP Distribution
	3.2 Software Requirements
	3.3 Compiling OpenLDAP 2
	3.4 OpenLDAP Clients and Servers
	3.5 The slapd.conf Configuration File
	3.6 Access Control Lists (ACLs)

	Chapter 4. OpenLDAP: Building a Company White Pages
	4.1 A Starting Point
	4.2 Defining the Schema
	4.3 Updating slapd.conf
	4.4 Starting slapd
	4.5 Adding the Initial Directory Entries
	4.6 Graphical Editors

	Chapter 5. Replication, Referrals, Searching, and SASL Explained
	5.1 More Than One Copy Is 'a Good Thing'
	5.2 Distributing the Directory
	5.3 Advanced Searching Options
	5.4 Determining a Server's Capabilities
	5.5 Creating Custom Schema Files for slapd
	5.6 SASL and OpenLDAP

	Part II: Application Integration
	Chapter 6. Replacing NIS
	6.1 More About NIS
	6.2 Schemas for Information Services
	6.3 Information Migration
	6.4 The pam_ldap Module
	6.5 The nss_ldap Module
	6.6 OpenSSH, PAM, and NSS
	6.7 Authorization Through PAM
	6.8 Netgroups
	6.9 Security
	6.10 Automount Maps
	6.11 PADL's NIS/LDAP Gateway

	Chapter 7. Email and LDAP
	7.1 Representing Users
	7.2 Email Clients and LDAP
	7.3 Mail Transfer Agents (MTAs)

	Chapter 8. Standard Unix Services and LDAP
	8.1 The Directory Namespace
	8.2 An FTP/HTTP Combination
	8.3 User Authentication with Samba
	8.4 FreeRadius
	8.5 Resolving Hosts
	8.6 Central Printer Management

	Chapter 9. LDAP Interoperability
	9.1 Interoperability or Integration?
	9.2 Directory Gateways
	9.3 Cross-Platform Authentication Services
	9.4 Distributed, Multivendor Directories
	9.5 Metadirectories
	9.6 Push/Pull Agents for Directory Synchronization

	Chapter 10. Net::LDAP and Perl
	10.1 The Net::LDAP Module
	10.2 Connecting, Binding, and Searching
	10.3 Working with Net::LDAP::LDIF
	10.4 Updating the Directory
	10.5 Advanced Net::LDAP Scripting

	Part III: Appendixes
	Appendix A. PAM and NSS
	A.1 Pluggable Authentication Modules
	A.2 Name Service Switch (NSS)

	Appendix B. OpenLDAP Command-Line Tools
	B.1 Debugging Options
	B.2 Slap Tools
	B.3 LDAP Tools

	Appendix C. Common Attributes and Objects
	C.1 Schema Files
	C.2 Attributes
	C.3 Object Classes

	Appendix D. LDAP RFCs, Internet-Drafts, and Mailing Lists
	D.1 Requests for Comments
	D.2 Mailing Lists

	Appendix E. slapd.conf ACLs
	E.1 What?
	E.2 Who?
	E.3 How Much?
	E.4 Examples

	Colophon

